Day : 95
WPG - 2
UTA - 4
DAL - 3
OTT - 7
LOS - 4
BUF - 3
SJS - 3
CAR - 2
TOR - 3
TBL - 0
CLB - 4
WSH - 8
VAN - 4
PHI - 2
ANH - 3
NJD - 4
MIN - 2
NYR - 3
FLA - 3
PIT - 2
GRG - 2
SAR - 5
PRO - 6
NOR - 1
HAM - 3
GAT - 2
CTW - 6
SJS - 5
Day : 96
(20-23-1) - L2
(9-33-5) - L2
(34-10-2) - W2
(22-21-4) - L2
(27-16-3) - L2
(10-34-4) - L2
(23-20-4) - W4
(33-6-3) - W2
(19-23-3) - L2
(14-27-1) - L3
(15-23-7) - W3
(24-17-2) - W2
(25-15-7) - OTL1
(25-14-5) - W1
(24-19-3) - L1
(14-26-4) - L1
(25-17-3) - OTL1
(31-8-5) - W5
(24-18-6) - W3
(28-15-2) - W4
(26-12-1) - W1
(26-18-2) - L1
(25-11-5) - W1
(25-19-6) - L2
(26-19-2) - W3
(26-14-3) - W1
(31-6-6) - L1
(31-27-1) - L1
(26-10-6) - W2
(26-19-4) - W2
(31-7-4) - W8
(31-11-4) - L3
(27-12-1) - W2
(27-18-5) - OTL1
(16-26-4) - L1
(16-19-2) - L1
(15-22-4) - W1
(15-23-4) - L1
(16-20-5) - W1
(16-30-0) - W1
(14-26-4) - L1
(14-19-1) - W1

Chicago Wolves
GP: 42 | W: 20 | L: 20 | OTL: 2 | P: 42
GF: 131 | GA: 159 | PP%: 15.22% | PK%: 72.85%
GM : Jason Perreault | Morale : 50 | Team Overall : N/A
Next Games #717 vs Charlotte Checkers
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Providence Bruins
27-14-4, 58pts
3
FINAL
4 Chicago Wolves
20-20-2, 42pts
Team Stats
W2StreakW2
14-7-0Home Record11-9-2
13-7-4Home Record9-11-0
6-3-1Last 10 Games4-6-0
4.60Goals Per Game3.12
3.18Goals Against Per Game3.79
22.41%Power Play Percentage15.22%
77.59%Penalty Kill Percentage72.85%
Portland Crying Chiwawas
20-18-5, 45pts
3
FINAL
4 Chicago Wolves
20-20-2, 42pts
Team Stats
OTL1StreakW2
12-8-1Home Record11-9-2
8-10-4Home Record9-11-0
4-5-1Last 10 Games4-6-0
3.70Goals Per Game3.12
3.95Goals Against Per Game3.79
21.80%Power Play Percentage15.22%
79.41%Penalty Kill Percentage72.85%
Chicago Wolves
20-20-2, 42pts
Day 97
Charlotte Checkers
26-10-6, 58pts
Team Stats
W2StreakW2
11-9-2Home Record13-5-3
9-11-0Away Record13-5-3
4-6-0Last 10 Games7-1-2
3.12Goals Per Game4.26
3.79Goals Against Per Game4.26
15.22%Power Play Percentage24.70%
72.85%Penalty Kill Percentage81.25%
Connecticut Whale
25-16-3, 53pts
Day 99
Chicago Wolves
20-20-2, 42pts
Team Stats
W1StreakW2
14-5-2Home Record11-9-2
11-11-1Away Record9-11-0
3-7-0Last 10 Games4-6-0
3.86Goals Per Game3.12
3.39Goals Against Per Game3.12
20.13%Power Play Percentage15.22%
82.73%Penalty Kill Percentage72.85%
Chicago Wolves
20-20-2, 42pts
Day 100
Joliette Sportif
13-27-4, 30pts
Team Stats
W2StreakL2
11-9-2Home Record7-11-3
9-11-0Away Record6-16-1
4-6-0Last 10 Games2-8-0
3.12Goals Per Game3.25
3.79Goals Against Per Game3.25
15.22%Power Play Percentage22.06%
72.85%Penalty Kill Percentage68.83%
Team Leaders
Goals
Justin Auger
17
Assists
Matt Filipe
24
Points
Justin Auger
30
Plus/Minus
Mike Vecchione
12
Wins
Jacob Markstrom
15
Save Percentage
Brandon Halverson
0.896

Team Stats
Goals For
131
3.12 GFG
Shots For
1188
28.29 Avg
Power Play Percentage
15.2%
21 GF
Offensive Zone Start
34.9%
Goals Against
159
3.79 GAA
Shots Against
1354
32.24 Avg
Penalty Kill Percentage
72.8%%
41 GA
Defensive Zone Start
39.9%
Team Info

General ManagerJason Perreault
CoachTodd McLellan
DivisionGrands Lacs
ConferenceHamel
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance3,000
Season Tickets300


Roster Info

Pro Team26
Farm Team20
Contract Limit46 / 50
Prospects24


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Tyler Benson (R)X100.0091408280858581796674737170787765000261975,000$
2Matt FilipeXX100.0077358678838682767172716969717155000272950,000$
3Spencer SmallmanX100.00803585788385767864737170707776450002831,100,000$
4Justin AugerX100.009745787589858679697475717187861500N0303850,000$
5Mathieu Desgagnés (R)X100.0062409378738276766871706472677755000243975,000$
6Angus Crookshank (R)X100.0079307386787381807374746382737065000251900,000$
7Dmitri Katelevsky (R)X100.0060259077708076757371706473676265000213800,000$
8Mike VecchioneXX100.0081387878797672787271716874697015000312800,000$
9Dmitrij JaskinXXX99.0087408081858784807175736677979215000311800,000$
10Quinton HowdenXX100.00823593797982767777727172749999150003211,700,000$
11Tyler SoyX100.0063309082708076777271696473666645000271950,000$
12Connor MackeyX100.00894873768682757750736889607578550002821,750,000$
13Vincent DesharnaisX100.00925274758681787650746190607674550002821,300,000$
14Toni Utunen (R)X100.0075308276748276765572638463707155000241800,000$
15Wyatte Wylie (R)X100.0074258374798181765574648469757255000251800,000$
16Ben Roger (R)X100.00722581738179807550706084636566650002211,150,000$
17Connor MurphyX100.009444727884817379507668886599971500N03141,000,000$
18Matthew Cairns (R)X100.0087457673877770725068628757737355000261800,000$
Scratches
1Nino NiederreiterXX100.00874081808583848163757467769999150003221,900,000$
2Cole Huckins (R)XX100.0078407375837879747369686474606055000213775,000$
3Arturas LaukaitisX100.0074388076737368746567676868636435000271750,000$
4Scott LaughtonXX100.008738797983848179777573717383831500N03021,000,000$
5Trevor CarrickX100.009345747888828381507572876880811500N0303900,000$
TEAM AVERAGE99.968138817881817877647269747077774500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Calvin Pickard100.00878484869289918989928788891500N03231,990,000$
2Brandon Halverson100.00858386878684848687858275704500N0284750,000$
3Jacob Markstrom99.00838384889189928989918799991500N03431,990,000$
Scratches
TEAM AVERAGE99.67858385879087898888898587862500
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd McLellan86878685868670CAN5631,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name POSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Justin AugerRW42171330024010039108367015.74%966915.9425712920002270241.49%945712010.9000000501
2Mike VecchioneC/RW4210172712220494069283714.49%1577818.53134139011241392145.22%544309000.6900000221
3Matt FilipeC/LW4222426-1214047335326483.77%1182319.60044141030111551148.46%3573212000.6300000012
4Nino NiederreiterLW/RW28817254255422370195511.43%651918.5534715782137970040.00%35448000.9600000020
5Spencer SmallmanRW42101323-11120433110941449.17%1165615.630111258000002063.33%304410000.7000000111
6Tyler BensonLW2391019-1340553661315014.75%544019.1714512610000292146.67%15458000.8600000121
7Mathieu DesgagnésLW4261117-2405276124419.84%974117.6500000000050045.16%313411000.4600000001
8Dmitrij JaskinC/LW/RW229615460303267222913.43%745720.8210111551125682155.04%278299000.6600000005
9Connor MurphyD4231215-4460881015030316.00%72102424.3811212990000129000.00%01249000.2900000112
10Cole HuckinsC/RW2821113214034203714255.41%945516.250555730000181047.80%318186000.5700000000
11Vincent DesharnaisD3511112218066874619182.17%4673721.080111273022266000.00%0443000.3300000011
12Quinton HowdenC/LW337512-320223460253311.67%1049615.0500003000031052.28%197397000.4800000010
13Matthew CairnsD4201111-1124049722623100.00%4561514.6600000000130000.00%0436000.3600000000
14Connor MackeyD1663951201319307920.00%1021913.70415143100007100.00%0812000.8200000000
15Trevor CarrickD19549-3140323338231613.16%2637919.993141451000246000.00%01217000.4700000000
16Wyatte WylieD3418926016492810123.57%3047313.91022356011232000.00%0124000.3800000001
17Tyler SoyC42448-134020155316367.55%43939.3800000000000047.80%364437000.4100000101
18Angus CrookshankLW344370801543481311.76%31855.4400013000001050.00%10211000.7600000011
19Ben RogerD36066-410028683211170.00%4870519.600007920000125000.00%0238000.1700000002
20Toni UtunenD31055-101001429127100.00%2132310.450000000013000.00%0817000.3100000000
21Arturas LaukaitisLW28011440365030.00%1381.38000000000000100.00%100000.5200000000
22Dmitri KatelevskyC31000000031000.00%0130.42000000000100100.00%500000.0000000000
Team Total or Average734104195299-51283577180110504206079.90%3981114815.19163248157102647112789013648.49%2279487336010.5400000111220
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jacob MarkstromChicago Wolves (VAN)35151800.8863.661885011151005485100.0000348120
2Brandon HalversonChicago Wolves (VAN)95210.8963.334694126249125300.000080100
3Calvin PickardChicago Wolves (VAN)70010.8206.21174001810057000.0000034000
Team Total or Average51202020.8833.7725294215913546674004242220


Player Name POS Age Birthday Terms Contract Cap % Year 2024Year 2025Year 2026Year 2027Year 2028Year 2029Year 2030
Forward
Angus CrookshankLW251999-01-02TW 10.00%900,000$RFA ( Groupe: 2 ) [Age: 26]
Arturas LaukaitisLW271997-01-22TW 10.00%750,000$UFA [Age: 28]
Cole HuckinsC/RW212003-01-02TW 30.00%775,000$775,000$775,000$RFA ( Groupe: 2 ) [Age: 24]
Dmitri KatelevskyC212003-01-02TW 30.00%800,000$800,000$800,000$RFA ( Groupe: 2 ) [Age: 24]
Dmitrij JaskinC/LW/RW311993-01-22TW 10.00%800,000$UFA [Age: 32]
Justin AugerRW301994-01-22NT TW 30.00%850,000$850,000$850,000$UFA [Age: 33]
Mathieu DesgagnésLW242000-01-02TW 30.00%975,000$975,000$975,000$RFA ( Groupe: 2 ) [Age: 27]
Matt FilipeC/LW271997-01-02TW 20.00%950,000$950,000$UFA [Age: 29]
Mike VecchioneC/RW311993-01-22TW 20.00%800,000$800,000$UFA [Age: 33]
Nino NiederreiterLW/RW321992-01-22TW 20.00%1,900,000$1,900,000$UFA [Age: 34]
Quinton HowdenC/LW321992-01-22TW 10.00%1,700,000$UFA [Age: 33]
Scott LaughtonC/LW301994-01-22NT TW 20.00%1,000,000$1,000,000$UFA [Age: 32]
Spencer SmallmanRW281996-01-02TW 30.00%1,100,000$1,100,000$1,100,000$UFA [Age: 31]
Tyler BensonLW261998-01-22TW 10.00%975,000$RFA ( Groupe: 2 ) [Age: 27]
Tyler SoyC271997-01-22TW 10.00%950,000$UFA [Age: 28]
AVERAGE (15)27.470.00%0$9,150,000$4,500,000$0$0$0$0$
Defenseman
Ben RogerD222002-01-02TW 10.00%1,150,000$RFA ( Groupe: 1 )[Age: 23]
Connor MackeyD281996-01-02TW 20.00%1,750,000$1,750,000$UFA [Age: 30]
Connor MurphyD311993-01-22NT TW 40.00%1,000,000$1,000,000$1,000,000$1,000,000$UFA [Age: 35]
Matthew CairnsD261998-01-22TW 10.00%800,000$RFA ( Groupe: 2 ) [Age: 27]
Toni UtunenD242000-01-02TW 10.00%800,000$RFA ( Groupe: 2 ) [Age: 25]
Trevor CarrickD301994-01-22NT TW 30.00%900,000$900,000$900,000$UFA [Age: 33]
Vincent DesharnaisD281996-01-02TW 20.00%1,300,000$1,300,000$UFA [Age: 30]
Wyatte WylieD251999-01-02TW 10.00%800,000$RFA ( Groupe: 2 ) [Age: 26]
AVERAGE (8)26.750.00%0$4,950,000$1,900,000$1,000,000$0$0$0$
Goalies
Brandon HalversonG281996-01-02NT TW 40.00%750,000$750,000$750,000$750,000$UFA [Age: 32]
Calvin PickardG321992-01-22NT TW 30.00%1,990,000$1,990,000$1,990,000$UFA [Age: 35]
Jacob MarkstromG341990-01-22NT TW 30.00%1,990,000$1,990,000$1,990,000$UFA [Age: 37]

Terms Legends : FV = Force Waiver / NT = No Trade / IN = Injured / TW = Two Way Contract (Can Play Pro + Can Play Farm)

Note: The salary cap amounts for the current year and the % of salary cap are based on a calculation of the simple salary cap calculation (Average Salary or Salary for the year depending on your salary options). If your salary cap is based on complex calculation, the results of this analysis could be incorrect by a small margin. The Current Year Pro Salary Cap is : 89,000,050$.




5 vs 5 Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Tyler BensonDmitrij JaskinJustin Auger25122
2Quinton HowdenMatt FilipeSpencer Smallman25122
3Mathieu DesgagnésMike VecchioneAngus Crookshank25122
4Mathieu DesgagnésTyler SoyDmitrij Jaskin25122
5 vs 5 Defense
Line # Defense Defense Time % PHY DF OF
1Matthew CairnsBen Roger25122
2Toni UtunenConnor Murphy25122
3Connor MackeyVincent Desharnais25122
4Vincent DesharnaisConnor Murphy25122
Power Play Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Spencer SmallmanJustin AugerDmitrij Jaskin60122
2Tyler BensonMatt FilipeMike Vecchione40122
Power Play Defense
Line # Defense Defense Time % PHY DF OF
1Vincent DesharnaisBen Roger60122
2Connor MackeyConnor Murphy40122
Penalty Kill 4 Players Forward
Line # Center Wing Time % PHY DF OF
1Mike VecchioneDmitrij Jaskin60122
2Justin AugerMatt Filipe40122
Penalty Kill 4 Players Defense
Line # Defense Defense Time % PHY DF OF
1Ben RogerConnor Murphy60122
2Matthew CairnsVincent Desharnais40122
Penalty Kill 3 Players
Line # Wing Time % PHY DF OF Defense Defense Time % PHY DF OF
1Mike Vecchione60122Matthew CairnsVincent Desharnais60122
2Justin Auger40122Ben RogerConnor Murphy40122
4 vs 4 Forward
Line # Center Wing Time % PHY DF OF
1Mike VecchioneJustin Auger60122
2Dmitrij JaskinMatt Filipe40122
4 vs 4 Defense
Line # Defense Defense Time % PHY DF OF
1Ben RogerVincent Desharnais60122
2Toni UtunenConnor Murphy40122
Last Minutes Offensive
Left Wing Center Right Wing Defense Defense
Justin AugerDmitrij JaskinTyler BensonBen RogerConnor Murphy
Last Minutes Defensive
Left Wing Center Right Wing Defense Defense
Justin AugerDmitrij JaskinTyler BensonBen RogerConnor Murphy
Extra Forwards
Normal PowerPlay Penalty Kill
Matt Filipe, Spencer Smallman, Justin AugerMike Vecchione, Spencer SmallmanMike Vecchione
Extra Defensemen
Normal PowerPlay Penalty Kill
Connor Murphy, Vincent Desharnais, Matthew CairnsConnor MurphyConnor Murphy, Vincent Desharnais
Penalty Shots
Mike Vecchione, Matt Filipe, Dmitrij Jaskin, Spencer Smallman, Justin Auger
Goalie
#1 : Jacob Markstrom, #2 : Calvin Pickard, #3 : Brandon Halverson
Custom OT Lines Forwards
Spencer Smallman, Dmitrij Jaskin, Quinton Howden, Mike Vecchione, Angus Crookshank, Tyler Soy, Tyler Soy, Justin Auger, Matt Filipe, Tyler Benson, Mathieu Desgagnés
Custom OT Lines Defensemen
Connor Mackey, Vincent Desharnais, Wyatte Wylie, Connor Murphy, Matthew Cairns


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Albany Devils1010000025-3000000000001010000025-300.0002350054333953141736739113248822200.00%4175.00%038680448.01%44992048.80%28858249.48%899554971345659332
2Binghamton Senators22000000725110000006241100000010141.00079160154333956541736739113681410377114.29%50100.00%138680448.01%44992048.80%28858249.48%899554971345659332
3Blainville-Boisbriand Armada1010000014-31010000014-30000000000000.00012300543339524417367391133591219200.00%6183.33%038680448.01%44992048.80%28858249.48%899554971345659332
4Chicoutimi Saguenéens1010000013-2000000000001010000013-200.00012300543339523417367391133792315200.00%6266.67%038680448.01%44992048.80%28858249.48%899554971345659332
5Connecticut Whale20200000510-50000000000020200000510-500.00058130054333955541736739113742816349111.11%8187.50%138680448.01%44992048.80%28858249.48%899554971345659332
6Danbury Trashers1010000018-7000000000001010000018-700.000112005433395194173673911336121026100.00%5260.00%038680448.01%44992048.80%28858249.48%899554971345659332
7Gatineau Olympiques2020000048-41010000024-21010000024-200.00047110054333954741736739113582212415240.00%6183.33%038680448.01%44992048.80%28858249.48%899554971345659332
8Grand Rapids Griffins21100000812-4110000005411010000038-520.50081523005433395494173673911368212235700.00%11463.64%138680448.01%44992048.80%28858249.48%899554971345659332
9Hamilton Bulldogs1000010045-11000010045-10000000000010.500471100543339526417367391132998203133.33%4175.00%038680448.01%44992048.80%28858249.48%899554971345659332
10Henderson Silver Knights11000000633110000006330000000000021.00061117005433395304173673911326124203133.33%2150.00%038680448.01%44992048.80%28858249.48%899554971345659332
11Lake Erie Monsters210010001367100010005411100000082641.0001318310054333955941736739113502312546350.00%6350.00%038680448.01%44992048.80%28858249.48%899554971345659332
12Laval Chiefs11000000532000000000001100000053221.00051015005433395344173673911335114209222.22%2150.00%038680448.01%44992048.80%28858249.48%899554971345659332
13Milwaukee Admirals1000010034-11000010034-10000000000010.50034700543339526417367391133084158112.50%20100.00%038680448.01%44992048.80%28858249.48%899554971345659332
14Portland Crying Chiwawas21001000853100010004311100000042241.000812200054333955141736739113711910387228.57%5180.00%038680448.01%44992048.80%28858249.48%899554971345659332
15Providence Bruins32001000844320010008440000000000061.000812200154333958741736739113983720556116.67%100100.00%138680448.01%44992048.80%28858249.48%899554971345659332
16Quebec Stars30300000714-72020000047-31010000037-400.0007121900543339582417367391131022618406116.67%9188.89%038680448.01%44992048.80%28858249.48%899554971345659332
17Roberval Dwarfs1010000017-61010000017-60000000000000.00011200543339526417367391133281024400.00%5260.00%138680448.01%44992048.80%28858249.48%899554971345659332
18Rochester Americans1010000025-31010000025-30000000000000.00024600543339529417367391134451416300.00%7185.71%038680448.01%44992048.80%28858249.48%899554971345659332
19San Antonio Rampage20200000412-81010000034-11010000018-700.0004610005433395604173673911363331843300.00%9455.56%038680448.01%44992048.80%28858249.48%899554971345659332
20Springfield Falcons2110000057-2110000004311010000014-320.50059140054333956141736739113612110417114.29%5260.00%038680448.01%44992048.80%28858249.48%899554971345659332
21The Nuuk Vikings53200000151502110000075232100000810-260.60015243900543339514841736739113160644411016212.50%22959.09%038680448.01%44992048.80%28858249.48%899554971345659332
22Trois-Rivières Lions11000000431110000004310000000000021.000481200543339531417367391132913633300.00%3166.67%038680448.01%44992048.80%28858249.48%899554971345659332
23Verdun Junior31101000121021010000023-121001000107340.6671219310054333959241736739113992920641400.00%9277.78%138680448.01%44992048.80%28858249.48%899554971345659332
24Wilkes-Barre/Scranton Penguins10001000541000000000001000100054121.0005712005433395334173673911325130205240.00%000%038680448.01%44992048.80%28858249.48%899554971345659332
Total42152005200131159-282289032007174-320711020006085-25420.50013121134202543339511884173673911313544543158421382115.22%1514172.85%638680448.01%44992048.80%28858249.48%899554971345659332
_Since Last GM Reset42152005200131159-282289032007174-320711020006085-25420.50013121134202543339511884173673911313544543158421382115.22%1514172.85%638680448.01%44992048.80%28858249.48%899554971345659332
_Vs Conference261012022008596-111447012004452-81265010004144-3260.5008513822301543339573241736739113832266205527921314.13%962870.83%438680448.01%44992048.80%28858249.48%899554971345659332
_Vs Division1141011002736-9820011002425-132100000311-8110.500274269025433395321417367391133711191012232827.14%451077.78%338680448.01%44992048.80%28858249.48%899554971345659332

Total For Players
Games Played Points Streak Goals Assists Points Shots For Shots Against Shots Blocked Penalty Minutes Hits Empty Net Goals Shutouts
4242W21312113421188135445431584202
All Games
GP W L OTW OTL SOWSOL GF GA
4215205200131159
Home Games
GP W L OTW OTL SOWSOL GF GA
228932007174
Visitor Games
GP W L OTW OTL SOWSOL GF GA
2071120006085
Last 10 Games
W L OTW OTL SOWSOL
460000
Power Play Attemps Power Play Goals Power Play % Penalty Kill Attemps Penalty Kill Goals Against Penalty Kill % Penalty Kill Goals For
1382115.22%1514172.85%6
Shots 1 Period Shots 2 Period Shots 3 Period Shots 4+ Period Goals 1 Period Goals 2 Period Goals 3 Period Goals 4+ Period
417367391135433395
Face Offs
Won Offensive Zone Total Offensive Won Offensive % Won Defensif Zone Total Defensive Won Defensive % Won Neutral Zone Total Neutral Won Neutral %
38680448.01%44992048.80%28858249.48%
Puck Time
In Offensive Zone Control In Offensive Zone In Defensive Zone Control In Defensive Zone In Neutral Zone Control In Neutral Zone
899554971345659332


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
Day:1
112Chicago Wolves3The Nuuk Vikings1WBoxScore
Day:4
427Providence Bruins1Chicago Wolves2WBoxScore
Day:7
747San Antonio Rampage4Chicago Wolves3LBoxScore
Day:9
968Binghamton Senators2Chicago Wolves6WBoxScore
Day:15
15101Grand Rapids Griffins4Chicago Wolves5WBoxScore
Day:17
17112Chicago Wolves5Wilkes-Barre/Scranton Penguins4WXBoxScore
Day:19
19133Quebec Stars4Chicago Wolves2LBoxScore
Day:20
20137Chicago Wolves2The Nuuk Vikings7LBoxScore
Day:22
22159Chicago Wolves1Binghamton Senators0WBoxScore
Day:24
24174Milwaukee Admirals4Chicago Wolves3LXBoxScore
Day:26
26195Chicago Wolves6Verdun Junior4WBoxScore
Day:27
27207Providence Bruins0Chicago Wolves2WBoxScore
Day:29
29227Trois-Rivières Lions3Chicago Wolves4WBoxScore
Day:32
32247Chicago Wolves4Portland Crying Chiwawas2WBoxScore
Day:34
34259Chicago Wolves8Lake Erie Monsters2WBoxScore
Day:38
38273Hamilton Bulldogs5Chicago Wolves4LXBoxScore
Day:40
40296Verdun Junior3Chicago Wolves2LBoxScore
Day:41
41305Chicago Wolves3The Nuuk Vikings2WBoxScore
Day:44
44329Henderson Silver Knights3Chicago Wolves6WBoxScore
Day:46
46346Chicago Wolves4Connecticut Whale6LBoxScore
Day:48
48361Chicago Wolves2Albany Devils5LBoxScore
Day:50
50372Springfield Falcons3Chicago Wolves4WBoxScore
Day:51
51386Chicago Wolves1San Antonio Rampage8LBoxScore
Day:53
53401Gatineau Olympiques4Chicago Wolves2LBoxScore
Day:55
55419Chicago Wolves3Grand Rapids Griffins8LBoxScore
Day:56
56432Chicago Wolves3Quebec Stars7LBoxScore
Day:58
58445Blainville-Boisbriand Armada4Chicago Wolves1LBoxScore
Day:60
60467Chicago Wolves1Chicoutimi Saguenéens3LBoxScore
Day:62
62476Chicago Wolves1Danbury Trashers8LBoxScore
Day:63
63485The Nuuk Vikings1Chicago Wolves6WBoxScore
Day:66
66507Lake Erie Monsters4Chicago Wolves5WXBoxScore
Day:68
68514Chicago Wolves1Connecticut Whale4LBoxScore
Day:69
69533Chicago Wolves2Gatineau Olympiques4LBoxScore
Day:72
72550The Nuuk Vikings4Chicago Wolves1LBoxScore
Day:74
74569Chicago Wolves5Laval Chiefs3WBoxScore
Day:76
76583Quebec Stars3Chicago Wolves2LBoxScore
Day:78
78606Chicago Wolves1Springfield Falcons4LBoxScore
Day:80
80612Roberval Dwarfs7Chicago Wolves1LBoxScore
Day:83
83637Chicago Wolves4Verdun Junior3WXBoxScore
Day:85
85648Rochester Americans5Chicago Wolves2LBoxScore
Day:90
90676Providence Bruins3Chicago Wolves4WXBoxScore
Day:94
94701Portland Crying Chiwawas3Chicago Wolves4WXBoxScore
Day:97
97717Chicago Wolves-Charlotte Checkers-
Day:99
99734Connecticut Whale-Chicago Wolves-
Day:100
100750Chicago Wolves-Joliette Sportif-
Day:102
102767Chisinau Pelicans-Chicago Wolves-
Day:104
104775Chicago Wolves-Binghamton Senators-
Day:107
107799Chicago Wolves-Wilkes-Barre/Scranton Penguins-
Day:108
108809Grand Rapids Griffins-Chicago Wolves-
Day:110
110831Manitoba Moose-Chicago Wolves-
Day:112
112846Chicago Wolves-Houston Aeros-
Day:115
115867Milwaukee Admirals-Chicago Wolves-
Day:117
117875Chicago Wolves-The Nuuk Vikings-
Day:119
119897Charlotte Checkers-Chicago Wolves-
Day:124
124921Chicago Wolves-Roberval Dwarfs-
Day:125
125935Chicoutimi Saguenéens-Chicago Wolves-
Day:127
127950Chicago Wolves-Henderson Silver Knights-
Day:129
129968Manitoba Moose-Chicago Wolves-
Day:131
131988Chicago Wolves-Hamilton Bulldogs-
Day:132
132998Chicoutimi Saguenéens-Chicago Wolves-
Day:135
1351017Chicago Wolves-Lake Erie Monsters-
Day:136
1361021Chicago Wolves-Grand Rapids Griffins-
Day:138
1381038San Jose Barracuda-Chicago Wolves-
Day:141
Trade Deadline --- Trades can’t be done after this day is simulated!
1411054Chicago Wolves-Providence Bruins-
Day:143
1431065Chicago Wolves-Portland Crying Chiwawas-
Day:145
1451077San Antonio Rampage-Chicago Wolves-
Day:149
1491104Norfolk Admirals-Chicago Wolves-
Day:151
1511115Chicago Wolves-Trois-Rivières Lions-
Day:153
1531135Joliette Sportif-Chicago Wolves-
Day:154
1541147Chicago Wolves-Milwaukee Admirals-
Day:156
1561160Chicago Wolves-Portland Crying Chiwawas-
Day:159
1591174Norfolk Admirals-Chicago Wolves-
Day:162
1621202San Antonio Rampage-Chicago Wolves-
Day:163
1631207Chicago Wolves-Blainville-Boisbriand Armada-
Day:166
1661229Chicago Wolves-Chisinau Pelicans-
Day:168
1681242Binghamton Senators-Chicago Wolves-
Day:170
1701259Chicago Wolves-Chisinau Pelicans-
Day:174
1741275Binghamton Senators-Chicago Wolves-
Day:178
1781306Laval Chiefs-Chicago Wolves-
Day:179
1791318Chicago Wolves-Bridgeport Sound Tigers-
Day:182
1821331Laval Chiefs-Chicago Wolves-
Day:183
1831339Chicago Wolves-Bridgeport Sound Tigers-



Arena Capacity - Ticket Price Attendance - %
Level 1 Level 2

Income
Home Games Left Average Attendance - % Average Income per Game Year to Date Revenue Capacity Team Popularity

Expenses
Year To Date Expenses Players Total Salaries Players Total Average Salaries Coaches Salaries
Salary Cap Per Days Salary Cap To Date Players In Salary Cap Players Out of Salary Cap

Estimate
Estimated Season Revenue Remaining Season Days Expenses Per Days Estimated Season Expenses




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Career Team Stats

Overall Home Visitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA