Day : 95
WPG - 2
UTA - 4
DAL - 3
OTT - 7
LOS - 4
BUF - 3
SJS - 3
CAR - 2
TOR - 3
TBL - 0
CLB - 4
WSH - 8
VAN - 4
PHI - 2
ANH - 3
NJD - 4
MIN - 2
NYR - 3
FLA - 3
PIT - 2
GRG - 2
SAR - 5
PRO - 6
NOR - 1
HAM - 3
GAT - 2
CTW - 6
SJS - 5
Day : 96
(20-23-1) - L2
(9-33-5) - L2
(34-10-2) - W2
(22-21-4) - L2
(27-16-3) - L2
(10-34-4) - L2
(23-20-4) - W4
(33-6-3) - W2
(19-23-3) - L2
(14-27-1) - L3
(15-23-7) - W3
(24-17-2) - W2
(25-15-7) - OTL1
(25-14-5) - W1
(24-19-3) - L1
(14-26-4) - L1
(25-17-3) - OTL1
(31-8-5) - W5
(24-18-6) - W3
(28-15-2) - W4
(26-12-1) - W1
(26-18-2) - L1
(25-11-5) - W1
(25-19-6) - L2
(26-19-2) - W3
(26-14-3) - W1
(31-6-6) - L1
(31-27-1) - L1
(26-10-6) - W2
(26-19-4) - W2
(31-7-4) - W8
(31-11-4) - L3
(27-12-1) - W2
(27-18-5) - OTL1
(16-26-4) - L1
(16-19-2) - L1
(15-22-4) - W1
(15-23-4) - L1
(16-20-5) - W1
(16-30-0) - W1
(14-26-4) - L1
(14-19-1) - W1

Connecticut Whale
GP: 44 | W: 25 | L: 16 | OTL: 3 | P: 53
GF: 170 | GA: 149 | PP%: 20.13% | PK%: 82.73%
GM : Francis Bérubé | Morale : 50 | Team Overall : N/A
Next Games #720 vs Chisinau Pelicans
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Connecticut Whale
25-16-3, 53pts
1
FINAL
3 Providence Bruins
27-14-4, 58pts
Team Stats
W1StreakW2
14-5-2Home Record14-7-0
11-11-1Home Record13-7-4
3-7-0Last 10 Games6-3-1
3.86Goals Per Game4.60
3.39Goals Against Per Game3.18
20.13%Power Play Percentage22.41%
82.73%Penalty Kill Percentage77.59%
Connecticut Whale
25-16-3, 53pts
6
FINAL
5 San Jose Barracuda
17-18-7, 41pts
Team Stats
W1StreakOTL1
14-5-2Home Record10-9-3
11-11-1Home Record7-9-4
3-7-0Last 10 Games4-3-3
3.86Goals Per Game3.12
3.39Goals Against Per Game4.07
20.13%Power Play Percentage20.31%
82.73%Penalty Kill Percentage76.97%
Chisinau Pelicans
16-21-5, 37pts
Day 97
Connecticut Whale
25-16-3, 53pts
Team Stats
L1StreakW1
11-9-2Home Record14-5-2
5-12-3Away Record11-11-1
3-7-0Last 10 Games3-7-0
3.05Goals Per Game3.86
3.98Goals Against Per Game3.86
18.32%Power Play Percentage20.13%
76.32%Penalty Kill Percentage82.73%
Connecticut Whale
25-16-3, 53pts
Day 99
Chicago Wolves
20-20-2, 42pts
Team Stats
W1StreakW2
14-5-2Home Record11-9-2
11-11-1Away Record9-11-0
3-7-0Last 10 Games4-6-0
3.86Goals Per Game3.12
3.39Goals Against Per Game3.12
20.13%Power Play Percentage15.22%
82.73%Penalty Kill Percentage72.85%
Laval Chiefs
26-12-1, 53pts
Day 100
Connecticut Whale
25-16-3, 53pts
Team Stats
W1StreakW1
17-5-0Home Record14-5-2
9-7-1Away Record11-11-1
5-5-0Last 10 Games3-7-0
4.21Goals Per Game3.86
3.23Goals Against Per Game3.86
23.08%Power Play Percentage20.13%
77.22%Penalty Kill Percentage82.73%
Team Leaders
Goals
Nick Robertson
28
Assists
Ryan Strome
30
Points
Nick Robertson
50
Plus/Minus
Vladislav Gavrikov
15
Wins
Felix Sandström
14
Save Percentage
Felix Sandström
0.893

Team Stats
Goals For
170
3.86 GFG
Shots For
1400
31.82 Avg
Power Play Percentage
20.1%
31 GF
Offensive Zone Start
36.9%
Goals Against
149
3.39 GAA
Shots Against
1351
30.70 Avg
Penalty Kill Percentage
82.7%%
24 GA
Defensive Zone Start
36.5%
Team Info

General ManagerFrancis Bérubé
CoachDave Hakstol
DivisionNilan
ConferenceFortunus
CaptainMattias Ekholm
Assistant #1Jonathan Audy-Marchessault
Assistant #2Nick Robertson


Arena Info

Capacity3,000
Attendance2,971
Season Tickets300


Roster Info

Pro Team23
Farm Team20
Contract Limit43 / 50
Prospects38


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Walker DuehrX99.00865077798680817873747570757578650002731,500,000$
2Lauri Pajuniemi (R)X100.0072308278817781787273726883747155000252950,000$
3Aidan Dudas (R)X99.0067378479718176757171707371687865000242850,000$
4Glenn GawdinXX100.00824081798083837971727269717575550002731,050,000$
5Marcus Sylvegård (R)X100.0083307383828381797174736879706865000251950,000$
6Nick Robertson (R) (A)X100.00712595817683778475767768837572750002311,500,000$
7Dakota JoshuaX100.00814081798182828075747369737779550002811,200,000$
8Ryan StromeXX100.0071338683778379857673746584999915000311950,000$
9Michael Brandsegg-Nygard (R)X100.0073257876807878756871706473646075000193950,000$
10Jonathan Audy-Marchessault (A)XXX100.0070358576727673757671726676899215000341900,000$
11Trent FredericXX100.00884078818683808073727368727070650002631,500,000$
12Dominik Bokk (R)XX99.00733396847986808364757566767677750002412,000,000$
13Drew Helleson (R)X100.0077257476818581765074678564727565000233850,000$
14Scott Walford (R)X99.00914476768884837750746787637685650002511,250,000$
15Vladislav GavrikovX100.00864088778682817850736788608577550002911,900,000$
16Mattias Ekholm (C)X99.00773388737875727550716486609191705000341950,000$
17Filip Westerlund (R)X100.0066358776727964745067628355656455000252800,000$
18Josh MahuraX98.00793381808180717950756587637876650002611,600,000$
Scratches
1Cam Hillis (R)X100.0062308077668167757469687171637255000242850,000$
2William LagessonX100.00884578768580727650716486617876550002811,500,000$
TEAM AVERAGE99.657735827879817778647370747176779500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Stuart Skinner (R)100.00858384868586858685868579736500N02621,467,000$
2Clay Stevenson (R)100.008383848787868785868585717085000251850,000$
3Felix Sandström100.0085818484888787888788867071850002732,000,000$
Scratches
TEAM AVERAGE100.00848284868786868686868573717500
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Hakstol83848282848270USA5531,500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name POSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick RobertsonLW442822507003421133489421.05%767915.441151639145000096249.18%61768001.4702000434
2Dominik BokkLW/RW4424234712202822122477519.67%569915.89391229145000004142.86%28642011.3400000534
3Ryan StromeC/RW441530458603038103477114.56%767115.25371027127000192053.56%5196610011.3402000252
4JJ PeterkaC/LW/RW221322351320151355283823.64%735015.9256111370000151145.10%102501012.0002000330
5Walker DuehrRW44824323260904173255110.96%2179618.11145139800041590156.00%50439000.8000000111
6Dakota JoshuaC4414142851008436105266713.33%969515.81527221130223381152.64%454546000.8100000132
7Trent FredericC/LW4112142612200532292294713.04%753012.94011061012261040.74%27436000.9800000013
8Scott WalfordD4432124-84401151087121244.23%70105423.9504481001123132100.00%0552000.4600000121
9Marcus SylvegårdRW44148225200612582274317.07%954212.3400012000001152.63%19543000.8100000220
10Lauri PajuniemiRW44129210120392574285916.22%951911.8100000000001242.86%284110000.8100000001
11Glenn GawdinC/RW4461420-112068348735556.90%762114.13000001011462048.68%265486000.6400000112
12Aidan DudasC4421618-112027757215462.78%1876717.43112145101171751049.61%6433712000.4700000010
13Vladislav GavrikovD3721416156053794622214.35%5774020.02011330000152000.00%0540000.4300000001
14Drew HellesonD4011415-118048554821262.08%2769117.2907714138000073000.00%0434000.4300000100
15Michael Brandsegg-NygardRW2841014-114024153181912.90%644015.74279583000001040.74%27164000.6400000000
16Declan ChisholmD282911-116028363317236.06%2752818.87134992000153100.00%0524000.4200000000
17Jonathan Audy-MarchessaultC/LW/RW447411-1340331765254610.77%153212.1000000000001059.26%27665000.4100000100
18Mattias EkholmD28189-2602248309133.33%4350418.020551478011084000.00%0130000.3600000000
19Josh MahuraD42189528048905024252.00%6692822.121121272000163100.00%0150000.1900000001
20Filip WesterlundD33156152011532115134.76%3354616.560000000000000.00%0017000.2200000000
21William LagessonD1823541803236208810.00%2532718.1900024000020010.00%0015000.3100000001
22Cam HillisC23134-6607111615126.25%423010.0000000000030041.77%15892000.3500000000
Team Total or Average824173295468702840950900142954087612.11%4651339916.26336396225136435825957251050.12%2408688346030.7006000222523
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Felix SandströmConnecticut Whale (NYR)2714920.8933.2015014080747388010.60052319100
2Clay StevensonConnecticut Whale (NYR)189510.8913.339200051469243000.00001725000
3Stuart SkinnerConnecticut Whale (NYR)42200.8883.75240001513470100.000040000
Team Total or Average49251630.8923.2926614014613507011154444100


Player Name POS Age Birthday Terms Contract Cap % Year 2024Year 2025Year 2026Year 2027Year 2028Year 2029Year 2030
Forward
Aidan DudasC242000-01-02TW 20.00%850,000$850,000$RFA ( Groupe: 2 ) [Age: 26]
Cam HillisC242000-01-02TW 20.00%850,000$850,000$RFA ( Groupe: 2 ) [Age: 26]
Dakota JoshuaC281996-01-02TW 10.00%1,200,000$UFA [Age: 29]
Dominik BokkLW/RW242000-01-22TW 10.00%2,000,000$RFA ( Groupe: 2 ) [Age: 25]
Glenn GawdinC/RW271997-01-02TW 30.00%1,050,000$1,050,000$1,050,000$UFA [Age: 30]
Jonathan Audy-MarchessaultC/LW/RW341990-01-22TW 10.00%900,000$UFA [Age: 35]
Lauri PajuniemiRW251999-01-02TW 20.00%950,000$950,000$RFA ( Groupe: 2 ) [Age: 27]
Marcus SylvegårdRW251999-01-02TW 10.00%950,000$RFA ( Groupe: 2 ) [Age: 26]
Michael Brandsegg-NygardRW192005-01-02TW 30.00%950,000$950,000$950,000$RFA ( Groupe: 1 )[Age: 22]
Nick RobertsonLW232001-01-02TW 10.00%1,500,000$RFA ( Groupe: 2 ) [Age: 24]
Ryan StromeC/RW311993-01-22TW 10.00%950,000$UFA [Age: 32]
Trent FredericC/LW261998-01-22TW 30.00%1,500,000$1,500,000$1,500,000$UFA [Age: 29]
Walker DuehrRW271997-01-02TW 30.00%1,500,000$1,500,000$1,500,000$UFA [Age: 30]
AVERAGE (13)25.920.00%0$7,650,000$5,000,000$0$0$0$0$
Defenseman
Drew HellesonD232001-01-02TW 30.00%850,000$850,000$850,000$RFA ( Groupe: 2 ) [Age: 26]
Filip WesterlundD251999-01-22TW 20.00%800,000$800,000$RFA ( Groupe: 2 ) [Age: 27]
Josh MahuraD261998-01-22TW 10.00%1,600,000$RFA ( Groupe: 2 ) [Age: 27]
Mattias EkholmD341990-01-22TW 10.00%950,000$UFA [Age: 35]
Scott WalfordD251999-01-22TW 10.00%1,250,000$RFA ( Groupe: 2 ) [Age: 26]
Vladislav GavrikovD291995-01-02TW 10.00%1,900,000$UFA [Age: 30]
William LagessonD281996-01-02TW 10.00%1,500,000$UFA [Age: 29]
AVERAGE (7)27.140.00%0$1,650,000$850,000$0$0$0$0$
Goalies
Clay StevensonG251999-01-02TW 10.00%850,000$RFA ( Groupe: 2 ) [Age: 26]
Felix SandströmG271997-01-22TW 30.00%2,000,000$2,000,000$2,000,000$UFA [Age: 30]
Stuart SkinnerG261998-01-02NT TW 20.00%1,467,000$1,467,000$UFA [Age: 28]

Terms Legends : FV = Force Waiver / NT = No Trade / IN = Injured / TW = Two Way Contract (Can Play Pro + Can Play Farm)

Note: The salary cap amounts for the current year and the % of salary cap are based on a calculation of the simple salary cap calculation (Average Salary or Salary for the year depending on your salary options). If your salary cap is based on complex calculation, the results of this analysis could be incorrect by a small margin. The Current Year Pro Salary Cap is : 89,000,050$.




5 vs 5 Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Nick RobertsonRyan StromeWalker Duehr25113
2Dominik BokkDakota JoshuaMichael Brandsegg-Nygard25122
3Trent FredericAidan DudasMarcus Sylvegård25122
4Jonathan Audy-MarchessaultGlenn GawdinLauri Pajuniemi25122
5 vs 5 Defense
Line # Defense Defense Time % PHY DF OF
1Josh MahuraMattias Ekholm25122
2Drew HellesonScott Walford25122
3Filip WesterlundVladislav Gavrikov25122
4Scott WalfordJosh Mahura25122
Power Play Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Nick RobertsonRyan StromeDominik Bokk60122
2Aidan DudasDakota JoshuaMichael Brandsegg-Nygard40122
Power Play Defense
Line # Defense Defense Time % PHY DF OF
1Drew HellesonMattias Ekholm60122
2Scott WalfordJosh Mahura40122
Penalty Kill 4 Players Forward
Line # Center Wing Time % PHY DF OF
1Aidan DudasWalker Duehr60122
2Dakota JoshuaRyan Strome40122
Penalty Kill 4 Players Defense
Line # Defense Defense Time % PHY DF OF
1Mattias EkholmScott Walford60122
2Josh MahuraDrew Helleson40122
Penalty Kill 3 Players
Line # Wing Time % PHY DF OF Defense Defense Time % PHY DF OF
1Aidan Dudas60122Mattias EkholmScott Walford60122
2Walker Duehr40122Josh MahuraDrew Helleson40122
4 vs 4 Forward
Line # Center Wing Time % PHY DF OF
1Walker DuehrMarcus Sylvegård60122
2Aidan DudasLauri Pajuniemi40122
4 vs 4 Defense
Line # Defense Defense Time % PHY DF OF
1Josh MahuraDrew Helleson60122
2Scott WalfordMattias Ekholm40122
Last Minutes Offensive
Left Wing Center Right Wing Defense Defense
Nick RobertsonRyan StromeDominik BokkDrew HellesonMattias Ekholm
Last Minutes Defensive
Left Wing Center Right Wing Defense Defense
Ryan StromeAidan DudasWalker DuehrDrew HellesonScott Walford
Extra Forwards
Normal PowerPlay Penalty Kill
Dominik Bokk, Nick Robertson, Michael Brandsegg-NygardMarcus Sylvegård, Lauri PajuniemiGlenn Gawdin
Extra Defensemen
Normal PowerPlay Penalty Kill
Drew Helleson, Josh Mahura, Scott WalfordJosh MahuraMattias Ekholm, Drew Helleson
Penalty Shots
Ryan Strome, Nick Robertson, Dominik Bokk, Lauri Pajuniemi, Marcus Sylvegård
Goalie
#1 : Clay Stevenson, #2 : Felix Sandström, #3 : Stuart Skinner
Custom OT Lines Forwards
Nick Robertson, Dominik Bokk, Walker Duehr, Marcus Sylvegård, Michael Brandsegg-Nygard, Ryan Strome, Ryan Strome, Dakota Joshua, Lauri Pajuniemi, Jonathan Audy-Marchessault, Aidan Dudas
Custom OT Lines Defensemen
Josh Mahura, Drew Helleson, Mattias Ekholm, Scott Walford, Vladislav Gavrikov


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Blainville-Boisbriand Armada20100001412-80000000000020100001412-810.25047110061455866747045945522722818414125.00%9455.56%043987050.46%45186052.44%30662648.88%1019660978350666333
2Bridgeport Sound Tigers33000000155101100000051422000000104661.00015223700614558610447045945522712712558112.50%60100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
3Charlotte Checkers1010000035-2000000000001010000035-200.00035800614558629470459455223313419100.00%20100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
4Chicago Wolves2200000010552200000010550000000000041.0001017270061455867447045945522551518398112.50%9188.89%043987050.46%45186052.44%30662648.88%1019660978350666333
5Chisinau Pelicans10001000431000000000001000100043121.000461000614558631470459455223121620300.00%30100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
6Danbury Trashers5410000024121233000000176112110000076180.80024416500614558617047045945522135503611918738.89%18288.89%143987050.46%45186052.44%30662648.88%1019660978350666333
7Gatineau Olympiques1000010034-11000010034-10000000000010.5003360061455864047045945522307426400.00%20100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
8Grand Rapids Griffins11000000431110000004310000000000021.0004812006145586354704594552230132256233.33%10100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
9Hamilton Bulldogs11000000211000000000001100000021121.00024600614558625470459455222786176116.67%30100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
10Henderson Silver Knights1010000013-21010000013-20000000000000.0001230061455863147045945522407430200.00%2150.00%043987050.46%45186052.44%30662648.88%1019660978350666333
11Joliette Sportif11000000523110000005230000000000021.0005611006145586294704594552232134243133.33%2150.00%043987050.46%45186052.44%30662648.88%1019660978350666333
12Lake Erie Monsters2100100012752100100012750000000000041.0001218300061455865547045945522781716526116.67%8187.50%043987050.46%45186052.44%30662648.88%1019660978350666333
13Manitoba Moose522010001917211000000633412010001314-160.6001933520061455861394704594552215454329819315.79%16381.25%043987050.46%45186052.44%30662648.88%1019660978350666333
14Milwaukee Admirals1010000028-6000000000001010000028-600.00024600614558640470459455223112824300.00%4250.00%043987050.46%45186052.44%30662648.88%1019660978350666333
15Norfolk Admirals31200000141221010000046-221100000106420.333142337006145586102470459455228423205411436.36%10280.00%043987050.46%45186052.44%30662648.88%1019660978350666333
16Portland Crying Chiwawas10001000431000000000001000100043121.000461000614558625470459455224115425100.00%20100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
17Providence Bruins30200001711-42010000168-21010000013-210.1677132010614558610047045945522963022679111.11%11372.73%043987050.46%45186052.44%30662648.88%1019660978350666333
18Quebec Stars1010000025-31010000025-30000000000000.00023500614558626470459455223611213300.00%10100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
19Rochester Americans1010000013-2000000000001010000013-200.00012300614558628470459455223012821500.00%4175.00%043987050.46%45186052.44%30662648.88%1019660978350666333
20San Jose Barracuda10001000651000000000001000100065121.000611170061455862847045945522342110196350.00%50100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
21Springfield Falcons1010000025-31010000025-30000000000000.0002460061455863047045945522356223200.00%10100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
22The Nuuk Vikings11000000422000000000001100000042221.0004812006145586314704594552228138224125.00%40100.00%143987050.46%45186052.44%30662648.88%1019660978350666333
23Trois-Rivières Lions2100100012662100100012660000000000041.0001221330061455867247045945522592216429333.33%8187.50%143987050.46%45186052.44%30662648.88%1019660978350666333
24Verdun Junior21100000871110000004221010000045-120.5008142200614558664470459455226021123710110.00%6266.67%043987050.46%45186052.44%30662648.88%1019660978350666333
25Wilkes-Barre/Scranton Penguins1010000023-1000000000001010000023-100.0002460061455862547045945522291418300.00%20100.00%043987050.46%45186052.44%30662648.88%1019660978350666333
Total4419160610217014921211250210193662723711040017783-6530.60217028545510614558614004704594552213514602789301543120.13%1392482.73%343987050.46%45186052.44%30662648.88%1019660978350666333
_Since Last GM Reset4419160610217014921211250210193662723711040017783-6530.60217028545510614558614004704594552213514602789301543120.13%1392482.73%343987050.46%45186052.44%30662648.88%1019660978350666333
_Vs Conference261012030019884141054000014132916580300057525270.5199816626410614558681147045945522782259158548851922.35%791284.81%143987050.46%45186052.44%30662648.88%1019660978350666333
_Vs Division1474000015159-86420000128208832000002339-16150.5365187138006145586426470459455224611569029051815.69%451273.33%043987050.46%45186052.44%30662648.88%1019660978350666333

Total For Players
Games Played Points Streak Goals Assists Points Shots For Shots Against Shots Blocked Penalty Minutes Hits Empty Net Goals Shutouts
4453W11702854551400135146027893010
All Games
GP W L OTW OTL SOWSOL GF GA
4419166102170149
Home Games
GP W L OTW OTL SOWSOL GF GA
2112521019366
Visitor Games
GP W L OTW OTL SOWSOL GF GA
2371140017783
Last 10 Games
W L OTW OTL SOWSOL
370000
Power Play Attemps Power Play Goals Power Play % Penalty Kill Attemps Penalty Kill Goals Against Penalty Kill % Penalty Kill Goals For
1543120.13%1392482.73%3
Shots 1 Period Shots 2 Period Shots 3 Period Shots 4+ Period Goals 1 Period Goals 2 Period Goals 3 Period Goals 4+ Period
470459455226145586
Face Offs
Won Offensive Zone Total Offensive Won Offensive % Won Defensif Zone Total Defensive Won Defensive % Won Neutral Zone Total Neutral Won Neutral %
43987050.46%45186052.44%30662648.88%
Puck Time
In Offensive Zone Control In Offensive Zone In Defensive Zone Control In Defensive Zone In Neutral Zone Control In Neutral Zone
1019660978350666333


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
Day:1
17Connecticut Whale1Norfolk Admirals3LBoxScore
Day:2
222Trois-Rivières Lions3Connecticut Whale8WBoxScore
Day:5
537Connecticut Whale4Manitoba Moose3WXBoxScore
Day:8
859Lake Erie Monsters4Connecticut Whale5WXBoxScore
Day:11
1175Danbury Trashers3Connecticut Whale8WBoxScore
Day:14
1494Connecticut Whale2Blainville-Boisbriand Armada9LBoxScore
Day:15
1599Connecticut Whale1Manitoba Moose4LBoxScore
Day:18
18122Grand Rapids Griffins3Connecticut Whale4WBoxScore
Day:20
20136Connecticut Whale3Bridgeport Sound Tigers2WBoxScore
Day:21
21148Connecticut Whale9Norfolk Admirals3WBoxScore
Day:23
23163Trois-Rivières Lions3Connecticut Whale4WXBoxScore
Day:25
25185Connecticut Whale2Blainville-Boisbriand Armada3LXXBoxScore
Day:27
27200Danbury Trashers2Connecticut Whale5WBoxScore
Day:28
28217Bridgeport Sound Tigers1Connecticut Whale5WBoxScore
Day:30
30230Connecticut Whale4Chisinau Pelicans3WXBoxScore
Day:32
32251Danbury Trashers1Connecticut Whale4WBoxScore
Day:37
37268Connecticut Whale2Manitoba Moose3LBoxScore
Day:39
39285Providence Bruins6Connecticut Whale5LXXBoxScore
Day:41
41301Connecticut Whale6Manitoba Moose4WBoxScore
Day:43
43315Connecticut Whale4Danbury Trashers2WBoxScore
Day:44
44324Springfield Falcons5Connecticut Whale2LBoxScore
Day:46
46346Chicago Wolves4Connecticut Whale6WBoxScore
Day:49
49365Connecticut Whale4The Nuuk Vikings2WBoxScore
Day:51
51382Manitoba Moose3Connecticut Whale6WBoxScore
Day:54
54411Providence Bruins2Connecticut Whale1LBoxScore
Day:56
56424Connecticut Whale7Bridgeport Sound Tigers2WBoxScore
Day:57
57441Connecticut Whale3Charlotte Checkers5LBoxScore
Day:59
59453Connecticut Whale3Danbury Trashers4LBoxScore
Day:60
60459Quebec Stars5Connecticut Whale2LBoxScore
Day:62
62483Joliette Sportif2Connecticut Whale5WBoxScore
Day:65
65501Connecticut Whale2Hamilton Bulldogs1WBoxScore
Day:68
68514Chicago Wolves1Connecticut Whale4WBoxScore
Day:70
70536Connecticut Whale4Portland Crying Chiwawas3WXBoxScore
Day:71
71548Gatineau Olympiques4Connecticut Whale3LXBoxScore
Day:73
73568Connecticut Whale2Milwaukee Admirals8LBoxScore
Day:75
75580Norfolk Admirals6Connecticut Whale4LBoxScore
Day:78
78598Connecticut Whale2Wilkes-Barre/Scranton Penguins3LBoxScore
Day:81
81616Lake Erie Monsters3Connecticut Whale7WBoxScore
Day:83
83633Connecticut Whale1Rochester Americans3LBoxScore
Day:85
85647Henderson Silver Knights3Connecticut Whale1LBoxScore
Day:89
89669Connecticut Whale4Verdun Junior5LBoxScore
Day:91
91681Verdun Junior2Connecticut Whale4WBoxScore
Day:93
93690Connecticut Whale1Providence Bruins3LBoxScore
Day:95
95705Connecticut Whale6San Jose Barracuda5WXBoxScore
Day:97
97720Chisinau Pelicans-Connecticut Whale-
Day:99
99734Connecticut Whale-Chicago Wolves-
Day:100
100749Laval Chiefs-Connecticut Whale-
Day:103
103771Connecticut Whale-Blainville-Boisbriand Armada-
Day:104
104784San Antonio Rampage-Connecticut Whale-
Day:107
107800Connecticut Whale-San Antonio Rampage-
Day:109
109817Albany Devils-Connecticut Whale-
Day:110
110830Connecticut Whale-Chisinau Pelicans-
Day:112
112847Connecticut Whale-Providence Bruins-
Day:114
114853Rochester Americans-Connecticut Whale-
Day:117
117874Connecticut Whale-San Antonio Rampage-
Day:118
118886Charlotte Checkers-Connecticut Whale-
Day:122
122911Connecticut Whale-Chicoutimi Saguenéens-
Day:124
124918Connecticut Whale-Henderson Silver Knights-
Day:125
125928Albany Devils-Connecticut Whale-
Day:127
127951Roberval Dwarfs-Connecticut Whale-
Day:129
129971Connecticut Whale-Houston Aeros-
Day:131
131985Wilkes-Barre/Scranton Penguins-Connecticut Whale-
Day:135
1351011Grand Rapids Griffins-Connecticut Whale-
Day:139
Trade Deadline --- Trades can’t be done after this day is simulated!
1391043Houston Aeros-Connecticut Whale-
Day:143
1431069Trois-Rivières Lions-Connecticut Whale-
Day:144
1441073Connecticut Whale-Springfield Falcons-
Day:149
1491101San Jose Barracuda-Connecticut Whale-
Day:151
1511120Connecticut Whale-Bridgeport Sound Tigers-
Day:152
1521133Lake Erie Monsters-Connecticut Whale-
Day:156
1561162Grand Rapids Griffins-Connecticut Whale-
Day:159
1591178Connecticut Whale-Albany Devils-
Day:161
1611196Danbury Trashers-Connecticut Whale-
Day:163
1631208Connecticut Whale-Springfield Falcons-
Day:165
1651227Danbury Trashers-Connecticut Whale-
Day:169
1691252Connecticut Whale-Binghamton Senators-
Day:171
1711260Chicoutimi Saguenéens-Connecticut Whale-
Day:175
1751286Connecticut Whale-Binghamton Senators-
Day:177
1771294San Jose Barracuda-Connecticut Whale-
Day:178
1781304Connecticut Whale-Norfolk Admirals-
Day:180
1801323Portland Crying Chiwawas-Connecticut Whale-
Day:182
1821330Connecticut Whale-Norfolk Admirals-
Day:183
1831336Connecticut Whale-Albany Devils-



Arena Capacity - Ticket Price Attendance - %
Level 1 Level 2

Income
Home Games Left Average Attendance - % Average Income per Game Year to Date Revenue Capacity Team Popularity

Expenses
Year To Date Expenses Players Total Salaries Players Total Average Salaries Coaches Salaries
Salary Cap Per Days Salary Cap To Date Players In Salary Cap Players Out of Salary Cap

Estimate
Estimated Season Revenue Remaining Season Days Expenses Per Days Estimated Season Expenses




Connecticut Whale Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Connecticut Whale Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Connecticut Whale Career Team Stats

Overall Home Visitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Connecticut Whale Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Connecticut Whale Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA