Day : 95
WPG - 2
UTA - 4
DAL - 3
OTT - 7
LOS - 4
BUF - 3
SJS - 3
CAR - 2
TOR - 3
TBL - 0
CLB - 4
WSH - 8
VAN - 4
PHI - 2
ANH - 3
NJD - 4
MIN - 2
NYR - 3
FLA - 3
PIT - 2
GRG - 2
SAR - 5
PRO - 6
NOR - 1
HAM - 3
GAT - 2
CTW - 6
SJS - 5
Day : 96
(20-23-1) - L2
(9-33-5) - L2
(34-10-2) - W2
(22-21-4) - L2
(27-16-3) - L2
(10-34-4) - L2
(23-20-4) - W4
(33-6-3) - W2
(19-23-3) - L2
(14-27-1) - L3
(15-23-7) - W3
(24-17-2) - W2
(25-15-7) - OTL1
(25-14-5) - W1
(24-19-3) - L1
(14-26-4) - L1
(25-17-3) - OTL1
(31-8-5) - W5
(24-18-6) - W3
(28-15-2) - W4
(26-12-1) - W1
(26-18-2) - L1
(25-11-5) - W1
(25-19-6) - L2
(26-19-2) - W3
(26-14-3) - W1
(31-6-6) - L1
(31-27-1) - L1
(26-10-6) - W2
(26-19-4) - W2
(31-7-4) - W8
(31-11-4) - L3
(27-12-1) - W2
(27-18-5) - OTL1
(16-26-4) - L1
(16-19-2) - L1
(15-22-4) - W1
(15-23-4) - L1
(16-20-5) - W1
(16-30-0) - W1
(14-26-4) - L1
(14-19-1) - W1

Manitoba Moose
GP: 41 | W: 15 | L: 22 | OTL: 4 | P: 34
GF: 149 | GA: 180 | PP%: 25.55% | PK%: 76.60%
GM : Tony Roy | Morale : 50 | Team Overall : N/A
Next Games #714 vs Chicoutimi Saguenéens
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Manitoba Moose
15-22-4, 34pts
3
FINAL
6 San Jose Barracuda
17-18-7, 41pts
Team Stats
W1StreakOTL1
10-10-2Home Record10-9-3
5-12-2Home Record7-9-4
3-6-1Last 10 Games4-3-3
3.63Goals Per Game3.12
4.39Goals Against Per Game4.07
25.55%Power Play Percentage20.31%
76.60%Penalty Kill Percentage76.97%
Verdun Junior
17-19-6, 40pts
1
FINAL
5 Manitoba Moose
15-22-4, 34pts
Team Stats
L2StreakW1
10-6-5Home Record10-10-2
7-13-1Home Record5-12-2
3-5-2Last 10 Games3-6-1
3.83Goals Per Game3.63
4.12Goals Against Per Game4.39
20.95%Power Play Percentage25.55%
78.03%Penalty Kill Percentage76.60%
Manitoba Moose
15-22-4, 34pts
Day 96
Chicoutimi Saguenéens
16-23-4, 36pts
Team Stats
W1StreakL1
10-10-2Home Record7-12-2
5-12-2Away Record9-11-2
3-6-1Last 10 Games3-6-1
3.63Goals Per Game3.28
4.39Goals Against Per Game3.28
25.55%Power Play Percentage21.13%
76.60%Penalty Kill Percentage75.80%
Binghamton Senators
19-19-4, 42pts
Day 98
Manitoba Moose
15-22-4, 34pts
Team Stats
W2StreakW1
12-8-1Home Record10-10-2
7-11-3Away Record5-12-2
4-5-1Last 10 Games3-6-1
3.57Goals Per Game3.63
4.02Goals Against Per Game3.63
16.06%Power Play Percentage25.55%
78.52%Penalty Kill Percentage76.60%
Manitoba Moose
15-22-4, 34pts
Day 99
Charlotte Checkers
26-10-6, 58pts
Team Stats
W1StreakW2
10-10-2Home Record13-5-3
5-12-2Away Record13-5-3
3-6-1Last 10 Games7-1-2
3.63Goals Per Game4.26
4.39Goals Against Per Game4.26
25.55%Power Play Percentage24.70%
76.60%Penalty Kill Percentage81.25%
Team Leaders
Goals
Conor Sheary
20
Assists
Sheldon Dries
25
Points
Conor Sheary
44
Plus/Minus
Brayden Tracey
5
Wins
Anders Lindback
10
Save Percentage
Darcy Kuemper
0.875

Team Stats
Goals For
149
3.63 GFG
Shots For
1210
29.51 Avg
Power Play Percentage
25.5%
35 GF
Offensive Zone Start
34.8%
Goals Against
180
4.39 GAA
Shots Against
1333
32.51 Avg
Penalty Kill Percentage
76.6%%
33 GA
Defensive Zone Start
37.6%
Team Info

General ManagerTony Roy
CoachAlexandre Burrows
DivisionGionta
ConferenceFortunus
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,999
Season Tickets300


Roster Info

Pro Team25
Farm Team20
Contract Limit45 / 50
Prospects28


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Josh Williams (R)X100.0070458477788080766771706573676555000233800,000$
2Conor ShearyXX100.00622599837582818070737268789089150003221,000,000$
3Taylor Ward (R)X100.00786079778380817672717162797375450002621,200,000$
4Florian Elias (R)X100.0062458976728280767472696573676655000221800,000$
5Sheldon DriesXXX97.47783578828283858079757568778988150003011,500,000$
6Ilya Usov (R)X100.0076408779808286797673727075706865000233800,000$
7Brayden Tracey (R)XX100.0075257779757781796872716278767855000233850,000$
8Daniil ZharkovX100.0078358780828482826072736878868315000301850,000$
9Reilly SmithXX100.0075358975808177776774736678979815000331850,000$
10Kevin RoyXX100.0054229980708078846072726581727315000312950,000$
11Skyler McKenzie (R)X100.00663588847482797763727268716968550002621,600,000$
12Nick BaptisteX100.0081358781878582806573736874747315000292850,000$
13Jack JohnsonX100.00834377738288878250776787779999150003721,750,000$
14Jonathon BlumX100.0075379177777676765075678776999915000351850,000$
15Sam JardineX100.0089387376808279785076698862898815000311950,000$
16Marcus BjörkX100.00833078788484797753736685627575550002721,500,000$
17Dylan OlsenX100.00874776788080787850737087759999150003321,100,000$
18Taylor DohertyX100.0094447470927771735072659355999915000332850,000$
19Matthew FinnX100.0086407979818274775074648663929015000301800,000$
20Tyler CumaX100.0083357874777674785175658860919115000341950,000$
Scratches
1Kai Uchacz (R)X100.0078307475817679747470716372606065000213850,000$
2Matt SchmalzXX100.0088457773817768737370686567656435000282850,000$
TEAM AVERAGE99.867738837880817978627370747282813500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Anders Lindback99.0080818594888587848587879899150003611,250,000$
2Darcy Kuemper100.008481848789878986868887858715000341950,000$
3Andrew Hammond100.008382848686878985868990828315000361850,000$
Scratches
TEAM AVERAGE99.67828184898886888586888888901500
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Alexandre Burrows81747268677570CAN4331,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name POSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Conor ShearyLW/RW41202444-4001736108346118.52%1782120.04791619108213141340049.63%135535011.0714000140
2Sheldon DriesC/LW/RW36142539-212004939118407011.86%1182722.995914259711241230252.08%2887314000.9401000211
3Daniil ZharkovLW41142539-17203240119416911.76%884420.5941115201071128741144.10%4155610000.9201000311
4Brayden TraceyC/LW4114183253206835120446511.67%671217.38000000000224044.32%555596000.9003000321
5Jack JohnsonD41121527-18400969471222616.90%70102625.038412231250003113210.00%0870000.5300000202
6Skyler McKenzieLW407192646025208642588.14%763215.810442186000001158.33%246011000.8212000101
7Ilya UsovC41141125-2380544189206115.73%2478319.1135820971122401148.18%2204412000.6401000021
8Taylor WardRW4171724-318057277530449.33%782420.1108891000000250145.45%66328000.5802000100
9Kevin RoyLW/RW41111324-180083590335512.22%860314.7200001000002057.14%216212000.8012000101
10Tyler CumaD3061016-5300516747192412.77%4273124.391346940003100000.00%0343000.4400000003
11Dylan OlsenD207714-11140355736172119.44%3545922.961451454000040210.00%01025000.6100000210
12Taylor DohertyD3741014-11260558138141410.53%3661116.532131061000034000.00%0939000.4600000011
13Jonathon BlumD3421113-42019813119166.45%4360317.75000314011051000.00%0532000.4300000010
14Marcus BjörkD343811-724049623812217.89%4858317.15224425000139000.00%0840000.3800000000
15Marc StaalD141910-680332924644.17%3529921.39000528022247000.00%0019000.6700000001
16Nick BaptisteRW1446101201332661715.38%216511.8001119000000050.00%20172001.2100000011
17Sam JardineD39279-220061613221116.25%3049712.76000221000037000.00%01326000.3600000000
18Matt SchmalzC/RW41268-81805128278177.41%446611.3800001000000054.72%26567000.3400000000
19Reilly SmithLW/RW72243206150240.00%0628.9100000000001038.89%3610001.2800000001
20Florian EliasC41033-800817174120.00%42466.00000140003420048.46%130102000.2400000000
21Josh WilliamsRW41202-520917138415.38%92435.9520231700000010.00%137000.1601000000
22Kai UchaczC410220601030200.00%1771.8901101000000030.77%1330000.5200000000
Team Total or Average756148248396-1582800806874121044267212.23%4471212316.04356297186106057124092914947.69%2189535390010.65317000161415
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anders LindbackManitoba Moose (WPG)30101520.8624.49148340111807417100.733152910101
2Darcy KuemperManitoba Moose (WPG)215720.8753.989950066526275100.00021229100
Team Total or Average51152240.8674.29247840177133369220174139201


Player Name POS Age Birthday Terms Contract Cap % Year 2024Year 2025Year 2026Year 2027Year 2028Year 2029Year 2030
Forward
Brayden TraceyC/LW232001-01-02TW 30.00%850,000$850,000$850,000$RFA ( Groupe: 2 ) [Age: 26]
Conor ShearyLW/RW321992-01-22TW 20.00%1,000,000$1,000,000$UFA [Age: 34]
Daniil ZharkovLW301994-01-22TW 10.00%850,000$UFA [Age: 31]
Florian EliasC222002-01-02TW 10.00%800,000$RFA ( Groupe: 1 )[Age: 23]
Ilya UsovC232001-01-02TW 30.00%800,000$800,000$800,000$RFA ( Groupe: 2 ) [Age: 26]
Josh WilliamsRW232001-01-02TW 30.00%800,000$800,000$800,000$RFA ( Groupe: 2 ) [Age: 26]
Kai UchaczC212003-01-02TW 30.00%850,000$850,000$850,000$RFA ( Groupe: 2 ) [Age: 24]
Kevin RoyLW/RW311993-01-22TW 20.00%950,000$950,000$UFA [Age: 33]
Matt SchmalzC/RW281996-01-22TW 20.00%850,000$850,000$UFA [Age: 30]
Nick BaptisteRW291995-01-22TW 20.00%850,000$850,000$UFA [Age: 31]
Reilly SmithLW/RW331991-01-22TW 10.00%850,000$UFA [Age: 34]
Sheldon DriesC/LW/RW301994-01-02TW 10.00%1,500,000$UFA [Age: 31]
Skyler McKenzieLW261998-01-22TW 20.00%1,600,000$1,600,000$UFA [Age: 28]
Taylor WardRW261998-01-02TW 20.00%1,200,000$1,200,000$UFA [Age: 28]
AVERAGE (14)26.930.00%0$9,750,000$3,300,000$0$0$0$0$
Defenseman
Dylan OlsenD331991-01-22TW 20.00%1,100,000$1,100,000$UFA [Age: 35]
Jack JohnsonD371987-01-22TW 20.00%1,750,000$1,750,000$UFA [Age: 39]
Jonathon BlumD351989-01-22TW 10.00%850,000$UFA [Age: 36]
Marcus BjörkD271997-01-02TW 20.00%1,500,000$1,500,000$UFA [Age: 29]
Matthew FinnD301994-01-22TW 10.00%800,000$UFA [Age: 31]
Sam JardineD311993-01-22TW 10.00%950,000$UFA [Age: 32]
Taylor DohertyD331991-01-22TW 20.00%850,000$850,000$UFA [Age: 35]
Tyler CumaD341990-01-22TW 10.00%950,000$UFA [Age: 35]
AVERAGE (8)32.500.00%0$5,200,000$0$0$0$0$0$
Goalies
Anders LindbackG361988-01-22TW 10.00%1,250,000$UFA [Age: 37]
Andrew HammondG361988-01-22TW 10.00%850,000$UFA [Age: 37]
Darcy KuemperG341990-01-22TW 10.00%950,000$UFA [Age: 35]

Terms Legends : FV = Force Waiver / NT = No Trade / IN = Injured / TW = Two Way Contract (Can Play Pro + Can Play Farm)

Note: The salary cap amounts for the current year and the % of salary cap are based on a calculation of the simple salary cap calculation (Average Salary or Salary for the year depending on your salary options). If your salary cap is based on complex calculation, the results of this analysis could be incorrect by a small margin. The Current Year Pro Salary Cap is : 89,000,050$.




5 vs 5 Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Daniil ZharkovReilly SmithConor Sheary25122
2Florian EliasIlya UsovNick Baptiste25122
3Kevin RoyBrayden TraceyTaylor Ward25122
4Daniil ZharkovFlorian EliasJosh Williams25122
5 vs 5 Defense
Line # Defense Defense Time % PHY DF OF
1Jack JohnsonDylan Olsen25122
2Sam JardineTaylor Doherty25122
3Marcus BjörkJosh Williams25122
4Jack JohnsonDylan Olsen25122
Power Play Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Daniil ZharkovNick BaptisteConor Sheary60122
2Josh WilliamsIlya UsovTaylor Ward40122
Power Play Defense
Line # Defense Defense Time % PHY DF OF
1Jack JohnsonDylan Olsen60122
2Sam JardineMarcus Björk40122
Penalty Kill 4 Players Forward
Line # Center Wing Time % PHY DF OF
1Taylor WardDaniil Zharkov60122
2Conor ShearyIlya Usov40122
Penalty Kill 4 Players Defense
Line # Defense Defense Time % PHY DF OF
1Jack JohnsonDylan Olsen60122
2Sam JardineMarcus Björk40122
Penalty Kill 3 Players
Line # Wing Time % PHY DF OF Defense Defense Time % PHY DF OF
1Conor Sheary60122Jack JohnsonDylan Olsen60122
2Daniil Zharkov40122Sam JardineMarcus Björk40122
4 vs 4 Forward
Line # Center Wing Time % PHY DF OF
1Taylor WardDaniil Zharkov60122
2Conor ShearyIlya Usov40122
4 vs 4 Defense
Line # Defense Defense Time % PHY DF OF
1Jack JohnsonDylan Olsen60122
2Sam JardineTaylor Doherty40122
Last Minutes Offensive
Left Wing Center Right Wing Defense Defense
Daniil ZharkovNick BaptisteConor ShearyJack JohnsonDylan Olsen
Last Minutes Defensive
Left Wing Center Right Wing Defense Defense
Daniil ZharkovNick BaptisteConor ShearyJack JohnsonDylan Olsen
Extra Forwards
Normal PowerPlay Penalty Kill
, , Taylor Ward, Taylor Ward
Extra Defensemen
Normal PowerPlay Penalty Kill
Marcus Björk, Sam Jardine, Dylan OlsenMarcus BjörkSam Jardine, Jack Johnson
Penalty Shots
Josh Williams, Daniil Zharkov, Conor Sheary, Taylor Ward, Ilya Usov
Goalie
#1 : Anders Lindback, #2 : Darcy Kuemper, #3 : Andrew Hammond
Custom OT Lines Forwards
Nick Baptiste, Daniil Zharkov, Conor Sheary, , Ilya Usov, Florian Elias, Florian Elias, Taylor Ward, Brayden Tracey, Kevin Roy, Josh Williams
Custom OT Lines Defensemen
Jack Johnson, Dylan Olsen, Sam Jardine, Taylor Doherty, Marcus Björk


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Albany Devils2110000013112110000007341010000068-220.5001325380051524536341038940028752812379666.67%6183.33%036675848.28%38682047.07%29260048.67%865527969341648322
2Binghamton Senators11000000615000000000001100000061521.0006121800515245331410389400283792154125.00%10100.00%036675848.28%38682047.07%29260048.67%865527969341648322
3Bridgeport Sound Tigers321000001275110000005232110000075240.66712203200515245392410389400287730185215320.00%9188.89%036675848.28%38682047.07%29260048.67%865527969341648322
4Charlotte Checkers20200000412-81010000015-41010000037-400.000459005152453614103894002866258317114.29%4325.00%036675848.28%38682047.07%29260048.67%865527969341648322
5Chicoutimi Saguenéens1010000046-21010000046-20000000000000.00046100051524533841038940028291210245120.00%5180.00%036675848.28%38682047.07%29260048.67%865527969341648322
6Chisinau Pelicans211000001113-2110000007431010000049-520.5001115260051524535441038940028732522364125.00%11463.64%136675848.28%38682047.07%29260048.67%865527969341648322
7Connecticut Whale522001001719-242100100141311010000036-350.50017294600515245315441038940028139673810916318.75%19384.21%036675848.28%38682047.07%29260048.67%865527969341648322
8Danbury Trashers1010000015-41010000015-40000000000000.000123005152453364103894002833111020200.00%5260.00%036675848.28%38682047.07%29260048.67%865527969341648322
9Gatineau Olympiques1010000027-5000000000001010000027-500.000235005152453224103894002835842411100.00%20100.00%036675848.28%38682047.07%29260048.67%865527969341648322
10Grand Rapids Griffins1000000134-1000000000001000000134-110.500358005152453254103894002833121227100.00%60100.00%036675848.28%38682047.07%29260048.67%865527969341648322
11Henderson Silver Knights20200000812-420200000812-40000000000000.000815230051524535941038940028672122376350.00%11554.55%036675848.28%38682047.07%29260048.67%865527969341648322
12Houston Aeros1010000029-7000000000001010000029-700.000235005152453324103894002843121017400.00%5340.00%036675848.28%38682047.07%29260048.67%865527969341648322
13Lake Erie Monsters11000000633110000006330000000000021.00069150051524532441038940028371162311100.00%3166.67%036675848.28%38682047.07%29260048.67%865527969341648322
14Laval Chiefs30200001917-81000000156-120200000411-710.16791524005152453914103894002810625166615320.00%7271.43%136675848.28%38682047.07%29260048.67%865527969341648322
15Milwaukee Admirals413000001317-4413000001317-40000000000020.2501319320051524531134103894002811842227813323.08%11190.91%136675848.28%38682047.07%29260048.67%865527969341648322
16Portland Crying Chiwawas11000000835110000008350000000000021.00081523005152453374103894002832104155240.00%20100.00%136675848.28%38682047.07%29260048.67%865527969341648322
17Quebec Stars1010000024-2000000000001010000024-200.0002460051524532441038940028288221300.00%110.00%036675848.28%38682047.07%29260048.67%865527969341648322
18San Antonio Rampage1000000112-1000000000001000000112-110.50012300515245331410389400284012811100.00%40100.00%036675848.28%38682047.07%29260048.67%865527969341648322
19San Jose Barracuda2110000079-2110000004311010000036-320.500711180051524535341038940028701714346233.33%7271.43%036675848.28%38682047.07%29260048.67%865527969341648322
20Springfield Falcons1010000014-3000000000001010000014-300.00012300515245329410389400283291428500.00%7185.71%036675848.28%38682047.07%29260048.67%865527969341648322
21The Nuuk Vikings11000000422000000000001100000042221.000471100515245324410389400283414822000%40100.00%036675848.28%38682047.07%29260048.67%865527969341648322
22Trois-Rivières Lions21000010963000000000002100001096341.000914230051524536041038940028651914377342.86%7185.71%136675848.28%38682047.07%29260048.67%865527969341648322
23Verdun Junior11000000514110000005140000000000021.000591400515245333410389400283686196116.67%3166.67%036675848.28%38682047.07%29260048.67%865527969341648322
24Wilkes-Barre/Scranton Penguins1010000016-51010000016-50000000000000.00011200515245324410389400282812223100.00%10100.00%036675848.28%38682047.07%29260048.67%865527969341648322
Total41142200113149180-31221010001018989019412000126091-31340.41514924839700515245312104103894002813334472848061373525.55%1413376.60%536675848.28%38682047.07%29260048.67%865527969341648322
_Since Last GM Reset41142200113149180-31221010001018989019412000126091-31340.41514924839700515245312104103894002813334472848061373525.55%1413376.60%536675848.28%38682047.07%29260048.67%865527969341648322
_Vs Conference22713001017599-241366001004952-3917000012647-21160.3647513020500515245367141038940028702254160414772025.97%802173.75%136675848.28%38682047.07%29260048.67%865527969341648322

Total For Players
Games Played Points Streak Goals Assists Points Shots For Shots Against Shots Blocked Penalty Minutes Hits Empty Net Goals Shutouts
4134W11492483971210133344728480600
All Games
GP W L OTW OTL SOWSOL GF GA
4114220113149180
Home Games
GP W L OTW OTL SOWSOL GF GA
22101001018989
Visitor Games
GP W L OTW OTL SOWSOL GF GA
1941200126091
Last 10 Games
W L OTW OTL SOWSOL
360001
Power Play Attemps Power Play Goals Power Play % Penalty Kill Attemps Penalty Kill Goals Against Penalty Kill % Penalty Kill Goals For
1373525.55%1413376.60%5
Shots 1 Period Shots 2 Period Shots 3 Period Shots 4+ Period Goals 1 Period Goals 2 Period Goals 3 Period Goals 4+ Period
410389400285152453
Face Offs
Won Offensive Zone Total Offensive Won Offensive % Won Defensif Zone Total Defensive Won Defensive % Won Neutral Zone Total Neutral Won Neutral %
36675848.28%38682047.07%29260048.67%
Puck Time
In Offensive Zone Control In Offensive Zone In Defensive Zone Control In Defensive Zone In Neutral Zone Control In Neutral Zone
865527969341648322


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
Day:2
217Milwaukee Admirals3Manitoba Moose2LBoxScore
Day:5
537Connecticut Whale4Manitoba Moose3LXBoxScore
Day:9
967Milwaukee Admirals3Manitoba Moose5WBoxScore
Day:12
1288Manitoba Moose4Chisinau Pelicans9LBoxScore
Day:15
1599Connecticut Whale1Manitoba Moose4WBoxScore
Day:17
17110Manitoba Moose2Gatineau Olympiques7LBoxScore
Day:19
19130Portland Crying Chiwawas3Manitoba Moose8WBoxScore
Day:21
21146Manitoba Moose2Quebec Stars4LBoxScore
Day:23
23166Henderson Silver Knights5Manitoba Moose4LBoxScore
Day:25
25184Manitoba Moose5Trois-Rivières Lions4WXXBoxScore
Day:26
26194Manitoba Moose1Bridgeport Sound Tigers4LBoxScore
Day:27
27206Wilkes-Barre/Scranton Penguins6Manitoba Moose1LBoxScore
Day:29
29225Manitoba Moose6Albany Devils8LBoxScore
Day:31
31240Milwaukee Admirals5Manitoba Moose3LBoxScore
Day:37
37268Connecticut Whale2Manitoba Moose3WBoxScore
Day:39
39283Manitoba Moose4The Nuuk Vikings2WBoxScore
Day:41
41301Connecticut Whale6Manitoba Moose4LBoxScore
Day:43
43318Manitoba Moose4Trois-Rivières Lions2WBoxScore
Day:44
44332Chisinau Pelicans4Manitoba Moose7WBoxScore
Day:47
47351Manitoba Moose1San Antonio Rampage2LXXBoxScore
Day:49
49364San Jose Barracuda3Manitoba Moose4WBoxScore
Day:51
51382Manitoba Moose3Connecticut Whale6LBoxScore
Day:52
52397Manitoba Moose2Laval Chiefs5LBoxScore
Day:54
54407Chicoutimi Saguenéens6Manitoba Moose4LBoxScore
Day:55
55422Manitoba Moose2Houston Aeros9LBoxScore
Day:57
57439Bridgeport Sound Tigers2Manitoba Moose5WBoxScore
Day:60
60462Manitoba Moose6Bridgeport Sound Tigers1WBoxScore
Day:62
62475Laval Chiefs6Manitoba Moose5LXXBoxScore
Day:64
64498Danbury Trashers5Manitoba Moose1LBoxScore
Day:68
68519Manitoba Moose6Binghamton Senators1WBoxScore
Day:69
69532Henderson Silver Knights7Manitoba Moose4LBoxScore
Day:72
72553Manitoba Moose1Springfield Falcons4LBoxScore
Day:73
73564Charlotte Checkers5Manitoba Moose1LBoxScore
Day:75
75577Manitoba Moose3Charlotte Checkers7LBoxScore
Day:78
78597Albany Devils3Manitoba Moose7WBoxScore
Day:82
82627Manitoba Moose2Laval Chiefs6LBoxScore
Day:83
83632Milwaukee Admirals6Manitoba Moose3LBoxScore
Day:86
86658Manitoba Moose3Grand Rapids Griffins4LXXBoxScore
Day:88
88662Lake Erie Monsters3Manitoba Moose6WBoxScore
Day:90
90670Manitoba Moose3San Jose Barracuda6LBoxScore
Day:94
94696Verdun Junior1Manitoba Moose5WBoxScore
Day:96
96714Manitoba Moose-Chicoutimi Saguenéens-
Day:98
98729Binghamton Senators-Manitoba Moose-
Day:99
99741Manitoba Moose-Charlotte Checkers-
Day:101
101761Manitoba Moose-Norfolk Admirals-
Day:103
103769Manitoba Moose-Wilkes-Barre/Scranton Penguins-
Day:104
104777Portland Crying Chiwawas-Manitoba Moose-
Day:107
107796Manitoba Moose-Danbury Trashers-
Day:108
108807Providence Bruins-Manitoba Moose-
Day:110
110831Manitoba Moose-Chicago Wolves-
Day:111
111843Danbury Trashers-Manitoba Moose-
Day:114
114858Manitoba Moose-Norfolk Admirals-
Day:117
117876Norfolk Admirals-Manitoba Moose-
Day:119
119895Manitoba Moose-Quebec Stars-
Day:121
121908Hamilton Bulldogs-Manitoba Moose-
Day:125
125933San Antonio Rampage-Manitoba Moose-
Day:127
127949Manitoba Moose-Rochester Americans-
Day:128
128962Manitoba Moose-San Jose Barracuda-
Day:129
129968Manitoba Moose-Chicago Wolves-
Day:131
131983Norfolk Admirals-Manitoba Moose-
Day:134
1341006Rochester Americans-Manitoba Moose-
Day:136
1361024Manitoba Moose-Gatineau Olympiques-
Day:138
1381037Blainville-Boisbriand Armada-Manitoba Moose-
Day:141
Trade Deadline --- Trades can’t be done after this day is simulated!
1411055Manitoba Moose-Quebec Stars-
Day:143
1431068Wilkes-Barre/Scranton Penguins-Manitoba Moose-
Day:146
1461086Manitoba Moose-Providence Bruins-
Day:149
1491103Springfield Falcons-Manitoba Moose-
Day:151
1511112Manitoba Moose-Rochester Americans-
Day:152
1521134Manitoba Moose-Chisinau Pelicans-
Day:154
1541144Blainville-Boisbriand Armada-Manitoba Moose-
Day:156
1561161Manitoba Moose-Chisinau Pelicans-
Day:157
1571167Manitoba Moose-Gatineau Olympiques-
Day:159
1591180Wilkes-Barre/Scranton Penguins-Manitoba Moose-
Day:162
1621197Manitoba Moose-Hamilton Bulldogs-
Day:163
1631213Joliette Sportif-Manitoba Moose-
Day:166
1661230Manitoba Moose-Henderson Silver Knights-
Day:168
1681246The Nuuk Vikings-Manitoba Moose-
Day:170
1701258Manitoba Moose-Portland Crying Chiwawas-
Day:174
1741280Houston Aeros-Manitoba Moose-
Day:175
1751285Manitoba Moose-Roberval Dwarfs-
Day:179
1791316The Nuuk Vikings-Manitoba Moose-
Day:183
1831344Joliette Sportif-Manitoba Moose-



Arena Capacity - Ticket Price Attendance - %
Level 1 Level 2

Income
Home Games Left Average Attendance - % Average Income per Game Year to Date Revenue Capacity Team Popularity

Expenses
Year To Date Expenses Players Total Salaries Players Total Average Salaries Coaches Salaries
Salary Cap Per Days Salary Cap To Date Players In Salary Cap Players Out of Salary Cap

Estimate
Estimated Season Revenue Remaining Season Days Expenses Per Days Estimated Season Expenses




Manitoba Moose Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manitoba Moose Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Manitoba Moose Career Team Stats

Overall Home Visitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Manitoba Moose Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Manitoba Moose Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA