Day : 95
WPG - 2
UTA - 4
DAL - 3
OTT - 7
LOS - 4
BUF - 3
SJS - 3
CAR - 2
TOR - 3
TBL - 0
CLB - 4
WSH - 8
VAN - 4
PHI - 2
ANH - 3
NJD - 4
MIN - 2
NYR - 3
FLA - 3
PIT - 2
GRG - 2
SAR - 5
PRO - 6
NOR - 1
HAM - 3
GAT - 2
CTW - 6
SJS - 5
Day : 96
(20-23-1) - L2
(9-33-5) - L2
(34-10-2) - W2
(22-21-4) - L2
(27-16-3) - L2
(10-34-4) - L2
(23-20-4) - W4
(33-6-3) - W2
(19-23-3) - L2
(14-27-1) - L3
(15-23-7) - W3
(24-17-2) - W2
(25-15-7) - OTL1
(25-14-5) - W1
(24-19-3) - L1
(14-26-4) - L1
(25-17-3) - OTL1
(31-8-5) - W5
(24-18-6) - W3
(28-15-2) - W4
(26-12-1) - W1
(26-18-2) - L1
(25-11-5) - W1
(25-19-6) - L2
(26-19-2) - W3
(26-14-3) - W1
(31-6-6) - L1
(31-27-1) - L1
(26-10-6) - W2
(26-19-4) - W2
(31-7-4) - W8
(31-11-4) - L3
(27-12-1) - W2
(27-18-5) - OTL1
(16-26-4) - L1
(16-19-2) - L1
(15-22-4) - W1
(15-23-4) - L1
(16-20-5) - W1
(16-30-0) - W1
(14-26-4) - L1
(14-19-1) - W1

Danbury Trashers
GP: 41 | W: 16 | L: 20 | OTL: 5 | P: 37
GF: 139 | GA: 159 | PP%: 19.05% | PK%: 77.69%
GM : Mathieu Veilleux | Morale : 50 | Team Overall : N/A
Next Games #715 vs Albany Devils
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Charlotte Checkers
26-10-6, 58pts
5
FINAL
2 Danbury Trashers
16-20-5, 37pts
Team Stats
W2StreakW1
13-5-3Home Record10-9-3
13-5-3Home Record6-11-2
7-1-2Last 10 Games4-6-0
4.26Goals Per Game3.39
3.19Goals Against Per Game3.88
24.70%Power Play Percentage19.05%
81.25%Penalty Kill Percentage77.69%
Chicoutimi Saguenéens
16-23-4, 36pts
1
FINAL
3 Danbury Trashers
16-20-5, 37pts
Team Stats
L1StreakW1
7-12-2Home Record10-9-3
9-11-2Home Record6-11-2
3-6-1Last 10 Games4-6-0
3.28Goals Per Game3.39
4.49Goals Against Per Game3.88
21.13%Power Play Percentage19.05%
75.80%Penalty Kill Percentage77.69%
Danbury Trashers
16-20-5, 37pts
Day 96
Albany Devils
14-30-0, 28pts
Team Stats
W1StreakW1
10-9-3Home Record8-13-0
6-11-2Away Record6-17-0
4-6-0Last 10 Games2-8-0
3.39Goals Per Game3.05
3.88Goals Against Per Game3.05
19.05%Power Play Percentage16.92%
77.69%Penalty Kill Percentage70.16%
Danbury Trashers
16-20-5, 37pts
Day 97
Milwaukee Admirals
31-6-6, 68pts
Team Stats
W1StreakL1
10-9-3Home Record17-1-3
6-11-2Away Record14-5-3
4-6-0Last 10 Games5-3-2
3.39Goals Per Game4.65
3.88Goals Against Per Game4.65
19.05%Power Play Percentage25.58%
77.69%Penalty Kill Percentage83.87%
Trois-Rivières Lions
28-11-4, 60pts
Day 99
Danbury Trashers
16-20-5, 37pts
Team Stats
L3StreakW1
17-3-1Home Record10-9-3
11-8-3Away Record6-11-2
7-3-0Last 10 Games4-6-0
4.44Goals Per Game3.39
3.42Goals Against Per Game3.39
21.32%Power Play Percentage19.05%
74.71%Penalty Kill Percentage77.69%
Team Leaders
Goals
Michael Joly
17
Assists
Matt Puempel
22
Points
Michael Joly
32
Plus/Minus
Martin Gernat
8
Wins
Steve Mason
14
Save Percentage
Steve Mason
0.882

Team Stats
Goals For
139
3.39 GFG
Shots For
1189
29.00 Avg
Power Play Percentage
19.0%
24 GF
Offensive Zone Start
35.5%
Goals Against
159
3.88 GAA
Shots Against
1305
31.83 Avg
Penalty Kill Percentage
77.7%%
29 GA
Defensive Zone Start
38.5%
Team Info

General ManagerMathieu Veilleux
CoachDan Bylsma
DivisionNilan
ConferenceFortunus
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,895
Season Tickets300


Roster Info

Pro Team26
Farm Team20
Contract Limit46 / 50
Prospects13


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Mike WintherX100.0072358987728074767872706577818115000302775,000$
2Alexander BarabanovX100.0063289984778282786873736977757315000302775,000$
3Mikael BacklundXX100.0061359478798381777872717176999915000351750,000$
4Tyler JohnsonXXX100.0047259979697978807675746581999915000342900,000$
5Reid BoucherXX100.0077359183777878786473726978949315000312775,000$
6Sebastian CollbergXX100.007530858272817781627473668082821500N0302800,000$
7Michael JolyX100.007733898579868081657474697586861500N0293900,000$
8Matt PuempelXX100.008140878280818181707474677583841500N0313800,000$
9Alex IafalloXX100.006730978176797778747373717087851500N0313800,000$
10Radovan BondraXX100.0087487574857469746469686766696735000272800,000$
11Keegan KolesarX100.0089467875917881786570726571737345000272800,000$
12Jason DemersX100.007135917577817978507363847299991500N0362775,000$
13Jordan GrossX100.00754090787781747850716683657067705000292775,000$
14Daniel BrickleyX100.00934373758780767650747086627375550002911,500,000$
15Martin GernatX100.0081458274837870765073658953909115000312900,000$
16Mark BarberioX100.0083428076797875785073658563919515000342775,000$
17Joey LaleggiaX100.007335828175817682537774856887881500N03221,250,000$
18Brenden KichtonX100.0080388275818181775073658859676755000322775,000$
19Markus NiemelainenX100.00844678768579767750726487587270550002611,400,000$
20Chris MartenetX100.0095467372927673715069648658747245000281900,000$
Scratches
1Taro HiroseX77.646530948771807580687673657480806500N0283975,000$
2Joel EdmundsonX100.0095457172908178765072659462898815000311900,000$
TEAM AVERAGE98.957738857980807778617369766983825500
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary Average
1Steve Mason100.00838683898888938686899099991500N0363800,000$
2Frederik Andersen100.008581818790878886868987898615000351950,000$
3David Rittich100.008383849189909189889188868715000321800,000$
Scratches
1Tuukka Rask100.008479808593848985868788999915000362775,000$
TEAM AVERAGE100.00848282889087908787898893931500
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dan Bylsma79818380888670USA5321,250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name POSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael JolyRW41171532-131205143104335416.35%862415.23461023112000013047.22%504724001.0201000130
2Matt PuempelLW/RW41102232-16220743594276210.64%1591022.202810810901171290053.69%2444219000.7013000200
3Mike WintherC4192231680313286325110.47%1075918.53000001122370051.65%364489100.8200000223
4Tyler JohnsonC/LW/RW41121830-70084092285713.04%1072317.653471897000061048.86%481425000.8300000101
5Reid BoucherLW/RW4192130-7120863978326311.54%1170917.29066798000001142.31%26647000.8500000211
6Taro HiroseLW36111728-1340262785305612.94%669019.1835812850004522044.19%43704000.8112000021
7Sebastian CollbergLW/RW41916251200562479375611.39%1356513.7801104000000062.96%27748000.8800000012
8Mikael BacklundC/RW4161723-122023408527547.06%1071917.55235161110002421357.50%405418000.6411000102
9Alex IafalloC/LW4115823320185690345116.67%2069316.9210111321361480050.91%3856121000.6600000401
10Keegan KolesarRW4191221340381352204617.31%93779.2000000000001056.25%16324001.1100000112
11Joey LaleggiaD3141216-9260445237181410.81%4669922.58246981000173000.00%01835000.4600000010
12Jason DemersD3821315-62036784120194.88%7587323.00000560000087100.00%0448000.3400000020
13Daniel BrickleyD346814-11180505137171716.22%3553415.73415854011266100.00%0523000.5200000001
14Alexander BarabanovRW385712-30031231152016.13%32296.0500000000070040.00%15211001.0412000000
15Martin GernatD3211011814034494216202.38%3852316.35011626000027100.00%0429000.4200000000
16Chris MartenetD3847114300535628101514.29%3846912.350000000000000.00%0427000.4700000002
17Mark BarberioD302810-920059734319204.65%4669323.11123872000051000.00%0738000.2900000001
18Markus NiemelainenD41459-8240678438191910.53%5876318.6320211100000092200.00%0434000.2400000000
19Radovan BondraLW/RW192577120247157913.33%31749.2100000000000044.44%963000.8000000010
20Joel EdmundsonD11022-5120183017880.00%1522820.76000223000120000.00%0211000.1800000000
21Daniel O'ReganC6022300202040.00%0183.1300000000030053.33%1520002.1300000000
22Brenden KichtonD200112100172112250.00%71668.320000000007000.00%0011000.1200000000
23Jordan GrossD38000-100021200.00%5170.460000300004000.00%001000.0000000000
24Ryan DzingelC/LW/RW5000000010000.00%040.860000000000000.00%000000.0000000000
Team Total or Average786137248385-832540818865118945372011.52%4811217115.4824416513410563472586414450.02%2169636360100.6349000141417
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Steve MasonDanbury Trashers (PHI)36141840.8823.701979401221037528000.6679360120
2Frederik AndersenDanbury Trashers (PHI)122210.8684.224832034258142100.0000531100
3David RittichDanbury Trashers (PHI)10000.8004.6226002104000.000005000
Team Total or Average49162050.8793.8124896015813056741094136220


Player Name POS Age Birthday Terms Contract Cap % Year 2024Year 2025Year 2026Year 2027Year 2028Year 2029Year 2030
Forward
Alex IafalloC/LW311993-01-22NT TW 30.00%800,000$800,000$800,000$UFA [Age: 34]
Alexander BarabanovRW301994-01-22TW 20.00%775,000$775,000$UFA [Age: 32]
Keegan KolesarRW271997-01-22TW 20.00%800,000$800,000$UFA [Age: 29]
Matt PuempelLW/RW311993-01-22NT TW 30.00%800,000$800,000$800,000$UFA [Age: 34]
Michael JolyRW291995-01-22NT TW 30.00%900,000$900,000$900,000$UFA [Age: 32]
Mikael BacklundC/RW351989-01-22TW 10.00%750,000$UFA [Age: 36]
Mike WintherC301994-01-22TW 20.00%775,000$775,000$UFA [Age: 32]
Radovan BondraLW/RW271997-01-22TW 20.00%800,000$800,000$UFA [Age: 29]
Reid BoucherLW/RW311993-01-22TW 20.00%775,000$775,000$UFA [Age: 33]
Sebastian CollbergLW/RW301994-01-22NT TW 20.00%800,000$800,000$UFA [Age: 32]
Taro HiroseLW281996-01-22NT IN TW 30.00%975,000$975,000$975,000$UFA [Age: 31]
Tyler JohnsonC/LW/RW341990-01-22TW 20.00%900,000$900,000$UFA [Age: 36]
AVERAGE (12)30.250.00%0$9,100,000$3,475,000$0$0$0$0$
Defenseman
Brenden KichtonD321992-01-22TW 20.00%775,000$775,000$UFA [Age: 34]
Chris MartenetD281996-01-22TW 10.00%900,000$UFA [Age: 29]
Daniel BrickleyD291995-01-22TW 10.00%1,500,000$UFA [Age: 30]
Jason DemersD361988-01-02NT TW 20.00%775,000$775,000$UFA [Age: 38]
Joel EdmundsonD311993-01-22TW 10.00%900,000$UFA [Age: 32]
Joey LaleggiaD321992-01-22NT TW 20.00%1,250,000$1,250,000$UFA [Age: 34]
Jordan GrossD291995-01-02TW 20.00%775,000$775,000$UFA [Age: 31]
Mark BarberioD341990-01-22TW 20.00%775,000$775,000$UFA [Age: 36]
Markus NiemelainenD261998-01-22TW 10.00%1,400,000$RFA ( Groupe: 2 ) [Age: 27]
Martin GernatD311993-01-22TW 20.00%900,000$900,000$UFA [Age: 33]
AVERAGE (10)30.800.00%0$5,250,000$0$0$0$0$0$
Goalies
David RittichG321992-01-22TW 10.00%800,000$UFA [Age: 33]
Frederik AndersenG351989-01-22TW 10.00%950,000$UFA [Age: 36]
Steve MasonG361988-01-22NT TW 30.00%800,000$800,000$800,000$UFA [Age: 39]
Tuukka RaskG361988-01-22TW 20.00%775,000$775,000$UFA [Age: 38]

Terms Legends : FV = Force Waiver / NT = No Trade / IN = Injured / TW = Two Way Contract (Can Play Pro + Can Play Farm)

Note: The salary cap amounts for the current year and the % of salary cap are based on a calculation of the simple salary cap calculation (Average Salary or Salary for the year depending on your salary options). If your salary cap is based on complex calculation, the results of this analysis could be incorrect by a small margin. The Current Year Pro Salary Cap is : 89,000,050$.




5 vs 5 Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Matt PuempelMichael JolyMikael Backlund25122
2Alexander BarabanovTyler JohnsonReid Boucher25122
3Sebastian CollbergAlex IafalloMike Winther25122
4Matt PuempelMike WintherKeegan Kolesar25122
5 vs 5 Defense
Line # Defense Defense Time % PHY DF OF
1Martin GernatChris Martenet25122
2Joey LaleggiaMark Barberio25122
3Markus NiemelainenJason Demers25122
4Mark BarberioJason Demers25122
Power Play Forward
Line # Left Wing Center Right Wing Time % PHY DF OF
1Matt PuempelMichael JolyMikael Backlund60122
2Alex IafalloTyler JohnsonReid Boucher40122
Power Play Defense
Line # Defense Defense Time % PHY DF OF
1Mark BarberioMarkus Niemelainen60122
2Joey LaleggiaJason Demers40122
Penalty Kill 4 Players Forward
Line # Center Wing Time % PHY DF OF
1Matt PuempelAlex Iafallo60122
2Michael JolyMikael Backlund40122
Penalty Kill 4 Players Defense
Line # Defense Defense Time % PHY DF OF
1Jason DemersMarkus Niemelainen60122
2Joey LaleggiaMark Barberio40122
Penalty Kill 3 Players
Line # Wing Time % PHY DF OF Defense Defense Time % PHY DF OF
1Matt Puempel60122Mark BarberioMarkus Niemelainen60122
2Mikael Backlund40122Martin GernatJason Demers40122
4 vs 4 Forward
Line # Center Wing Time % PHY DF OF
1Matt PuempelSebastian Collberg60122
2Michael JolyMikael Backlund40122
4 vs 4 Defense
Line # Defense Defense Time % PHY DF OF
1Mark BarberioJason Demers60122
2Joey LaleggiaMarkus Niemelainen40122
Last Minutes Offensive
Left Wing Center Right Wing Defense Defense
Matt PuempelMichael JolyMikael BacklundJoey LaleggiaMark Barberio
Last Minutes Defensive
Left Wing Center Right Wing Defense Defense
Matt PuempelMichael JolyMikael BacklundJoey LaleggiaMark Barberio
Extra Forwards
Normal PowerPlay Penalty Kill
Sebastian Collberg, Alex Iafallo, Mikael BacklundSebastian Collberg, Alex IafalloMatt Puempel
Extra Defensemen
Normal PowerPlay Penalty Kill
Markus Niemelainen, Jason Demers, Mark BarberioMarkus NiemelainenMarkus Niemelainen, Mark Barberio
Penalty Shots
Matt Puempel, Michael Joly, Sebastian Collberg, Mikael Backlund, Tyler Johnson
Goalie
#1 : Steve Mason, #2 : David Rittich, #3 : Frederik Andersen
Custom OT Lines Forwards
Matt Puempel, Michael Joly, Alexander Barabanov, Mikael Backlund, Tyler Johnson, Reid Boucher, Reid Boucher, Sebastian Collberg, Alex Iafallo, Keegan Kolesar, Mike Winther
Custom OT Lines Defensemen
Jason Demers, Chris Martenet, Joey Laleggia, Mark Barberio, Markus Niemelainen


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Albany Devils21000100945210001009450000000000030.750916250047444287339138739228691516519333.33%8187.50%038576050.66%41182549.82%28955651.98%907575942339642322
2Blainville-Boisbriand Armada20100010813-50000000000020100010813-520.5008122000474442854391387392288130163011100.00%8450.00%038576050.66%41182549.82%28955651.98%907575942339642322
3Bridgeport Sound Tigers11000000624000000000001100000062421.00061117004744428333913873922835164286233.33%20100.00%038576050.66%41182549.82%28955651.98%907575942339642322
4Charlotte Checkers2020000049-51010000025-31010000024-200.0004610004744428403913873922871256373133.33%30100.00%038576050.66%41182549.82%28955651.98%907575942339642322
5Chicago Wolves11000000817110000008170000000000021.0008152300474442836391387392281962325240.00%10100.00%038576050.66%41182549.82%28955651.98%907575942339642322
6Chicoutimi Saguenéens3200010011833200010011830000000000050.8331121320047444287839138739228774524597228.57%120100.00%138576050.66%41182549.82%28955651.98%907575942339642322
7Chisinau Pelicans1000010034-1000000000001000010034-110.50036900474442833391387392282152235120.00%10100.00%038576050.66%41182549.82%28955651.98%907575942339642322
8Connecticut Whale514000001224-122110000067-130300000617-1120.2001222340047444281353913873922817058368618211.11%18761.11%038576050.66%41182549.82%28955651.98%907575942339642322
9Grand Rapids Griffins312000001411300000000000312000001411320.3331425390047444289439138739228971916706233.33%8275.00%038576050.66%41182549.82%28955651.98%907575942339642322
10Hamilton Bulldogs1010000024-2000000000001010000024-200.00024600474442823391387392282915811300.00%40100.00%038576050.66%41182549.82%28955651.98%907575942339642322
11Henderson Silver Knights2010000157-21010000023-11000000134-110.25051015004744428663913873922859261047600.00%5260.00%038576050.66%41182549.82%28955651.98%907575942339642322
12Houston Aeros21000100880210001008800000000000030.75081624004744428703913873922863288469111.11%40100.00%038576050.66%41182549.82%28955651.98%907575942339642322
13Lake Erie Monsters1010000046-21010000046-20000000000000.000471100474442826391387392283181217300.00%6266.67%138576050.66%41182549.82%28955651.98%907575942339642322
14Manitoba Moose11000000514000000000001100000051421.0005813004744428333913873922836154165240.00%20100.00%038576050.66%41182549.82%28955651.98%907575942339642322
15Norfolk Admirals2010100047-3100010003211010000015-420.500471100474442873391387392286915835600.00%4175.00%038576050.66%41182549.82%28955651.98%907575942339642322
16Portland Crying Chiwawas11000000532000000000001100000053221.0005914004744428313913873922824102263266.67%10100.00%038576050.66%41182549.82%28955651.98%907575942339642322
17Providence Bruins30200010813-5201000105501010000038-520.33381220004744428833913873922899362250600.00%11281.82%138576050.66%41182549.82%28955651.98%907575942339642322
18Roberval Dwarfs20200000512-720200000512-70000000000000.000510150047444285539138739228611914337114.29%7271.43%038576050.66%41182549.82%28955651.98%907575942339642322
19San Jose Barracuda30102000880200020006421010000024-240.66781321004744428763913873922887382053900.00%10280.00%038576050.66%41182549.82%28955651.98%907575942339642322
20Springfield Falcons1010000035-21010000035-20000000000000.000369004744428283913873922828131229500.00%6183.33%038576050.66%41182549.82%28955651.98%907575942339642322
21The Nuuk Vikings1010000036-31010000036-30000000000000.0003690047444282739138739228401814203266.67%7271.43%038576050.66%41182549.82%28955651.98%907575942339642322
22Verdun Junior10001000431000000000001000100043121.000461000474442822391387392283921419100.00%2150.00%038576050.66%41182549.82%28955651.98%907575942339642322
Total41102004421139159-202269033107576-119411011116483-19370.45113924838700474442811893913873922813054812608181262419.05%1302977.69%338576050.66%41182549.82%28955651.98%907575942339642322
_Since Last GM Reset41102004421139159-202269033107576-119411011116483-19370.45113924838700474442811893913873922813054812608181262419.05%1302977.69%338576050.66%41182549.82%28955651.98%907575942339642322
_Vs Conference25612032117791-14143503210444311137000013348-15230.4607713621300474442874139138739228810295148504851315.29%741678.38%138576050.66%41182549.82%28955651.98%907575942339642322
_Vs Division10370011043421323001101214-2714000003128390.4504374117004744428299391387392283471216019825624.00%30970.00%138576050.66%41182549.82%28955651.98%907575942339642322

Total For Players
Games Played Points Streak Goals Assists Points Shots For Shots Against Shots Blocked Penalty Minutes Hits Empty Net Goals Shutouts
4137W11392483871189130548126081800
All Games
GP W L OTW OTL SOWSOL GF GA
4110204421139159
Home Games
GP W L OTW OTL SOWSOL GF GA
226933107576
Visitor Games
GP W L OTW OTL SOWSOL GF GA
1941111116483
Last 10 Games
W L OTW OTL SOWSOL
460000
Power Play Attemps Power Play Goals Power Play % Penalty Kill Attemps Penalty Kill Goals Against Penalty Kill % Penalty Kill Goals For
1262419.05%1302977.69%3
Shots 1 Period Shots 2 Period Shots 3 Period Shots 4+ Period Goals 1 Period Goals 2 Period Goals 3 Period Goals 4+ Period
391387392284744428
Face Offs
Won Offensive Zone Total Offensive Won Offensive % Won Defensif Zone Total Defensive Won Defensive % Won Neutral Zone Total Neutral Won Neutral %
38576050.66%41182549.82%28955651.98%
Puck Time
In Offensive Zone Control In Offensive Zone In Defensive Zone Control In Defensive Zone In Neutral Zone Control In Neutral Zone
907575942339642322


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
Day:1
110Danbury Trashers7Grand Rapids Griffins1WBoxScore
Day:2
220Danbury Trashers2Blainville-Boisbriand Armada8LBoxScore
Day:5
531Chicoutimi Saguenéens2Danbury Trashers4WBoxScore
Day:8
852Albany Devils1Danbury Trashers7WBoxScore
Day:11
1175Danbury Trashers3Connecticut Whale8LBoxScore
Day:13
1390Providence Bruins3Danbury Trashers4WXXBoxScore
Day:17
17111Danbury Trashers3Chisinau Pelicans4LXBoxScore
Day:18
18121Danbury Trashers6Blainville-Boisbriand Armada5WXXBoxScore
Day:20
20134Norfolk Admirals2Danbury Trashers3WXBoxScore
Day:22
22154Springfield Falcons5Danbury Trashers3LBoxScore
Day:24
24172Danbury Trashers2Grand Rapids Griffins4LBoxScore
Day:26
26189Chicoutimi Saguenéens5Danbury Trashers4LXBoxScore
Day:27
27200Danbury Trashers2Connecticut Whale5LBoxScore
Day:29
29219Roberval Dwarfs6Danbury Trashers4LBoxScore
Day:31
31242Danbury Trashers5Grand Rapids Griffins6LBoxScore
Day:32
32251Danbury Trashers1Connecticut Whale4LBoxScore
Day:34
34260San Jose Barracuda2Danbury Trashers3WXBoxScore
Day:39
39286Houston Aeros5Danbury Trashers4LXBoxScore
Day:41
41303Danbury Trashers5Portland Crying Chiwawas3WBoxScore
Day:43
43315Connecticut Whale4Danbury Trashers2LBoxScore
Day:45
45334Danbury Trashers2Hamilton Bulldogs4LBoxScore
Day:46
46347San Jose Barracuda2Danbury Trashers3WXBoxScore
Day:49
49362Danbury Trashers3Providence Bruins8LBoxScore
Day:51
51383Providence Bruins2Danbury Trashers1LBoxScore
Day:54
54409Albany Devils3Danbury Trashers2LXBoxScore
Day:56
56430Danbury Trashers3Henderson Silver Knights4LXXBoxScore
Day:57
57440Danbury Trashers2San Jose Barracuda4LBoxScore
Day:59
59453Connecticut Whale3Danbury Trashers4WBoxScore
Day:62
62476Chicago Wolves1Danbury Trashers8WBoxScore
Day:64
64498Danbury Trashers5Manitoba Moose1WBoxScore
Day:67
67509Danbury Trashers2Charlotte Checkers4LBoxScore
Day:68
68518The Nuuk Vikings6Danbury Trashers3LBoxScore
Day:71
71541Houston Aeros3Danbury Trashers4WBoxScore
Day:72
72558Danbury Trashers1Norfolk Admirals5LBoxScore
Day:75
75575Henderson Silver Knights3Danbury Trashers2LBoxScore
Day:78
78599Danbury Trashers4Verdun Junior3WXBoxScore
Day:79
79610Lake Erie Monsters6Danbury Trashers4LBoxScore
Day:83
83630Danbury Trashers6Bridgeport Sound Tigers2WBoxScore
Day:84
84643Roberval Dwarfs6Danbury Trashers1LBoxScore
Day:89
89668Charlotte Checkers5Danbury Trashers2LBoxScore
Day:94
94697Chicoutimi Saguenéens1Danbury Trashers3WBoxScore
Day:96
96715Danbury Trashers-Albany Devils-
Day:97
97721Danbury Trashers-Milwaukee Admirals-
Day:99
99737Trois-Rivières Lions-Danbury Trashers-
Day:101
101764Rochester Americans-Danbury Trashers-
Day:104
104782Danbury Trashers-Albany Devils-
Day:107
107796Manitoba Moose-Danbury Trashers-
Day:109
109814Danbury Trashers-Rochester Americans-
Day:110
110827Quebec Stars-Danbury Trashers-
Day:111
111843Danbury Trashers-Manitoba Moose-
Day:114
114860Springfield Falcons-Danbury Trashers-
Day:116
116868Danbury Trashers-Charlotte Checkers-
Day:118
118887Danbury Trashers-Milwaukee Admirals-
Day:120
120900Wilkes-Barre/Scranton Penguins-Danbury Trashers-
Day:123
123912Danbury Trashers-Trois-Rivières Lions-
Day:125
125927Danbury Trashers-Grand Rapids Griffins-
Day:126
126940Norfolk Admirals-Danbury Trashers-
Day:128
128961San Antonio Rampage-Danbury Trashers-
Day:132
132993Laval Chiefs-Danbury Trashers-
Day:133
1331003Danbury Trashers-Houston Aeros-
Day:135
1351015Danbury Trashers-Joliette Sportif-
Day:137
1371032Joliette Sportif-Danbury Trashers-
Day:141
Trade Deadline --- Trades can’t be done after this day is simulated!
1411056Danbury Trashers-Wilkes-Barre/Scranton Penguins-
Day:143
1431064Binghamton Senators-Danbury Trashers-
Day:148
1481094Lake Erie Monsters-Danbury Trashers-
Day:150
1501111Danbury Trashers-Chisinau Pelicans-
Day:152
1521127Bridgeport Sound Tigers-Danbury Trashers-
Day:153
1531137Danbury Trashers-San Antonio Rampage-
Day:155
1551154Danbury Trashers-Bridgeport Sound Tigers-
Day:156
1561164Albany Devils-Danbury Trashers-
Day:159
1591177Danbury Trashers-Blainville-Boisbriand Armada-
Day:161
1611196Danbury Trashers-Connecticut Whale-
Day:162
1621203Quebec Stars-Danbury Trashers-
Day:165
1651227Danbury Trashers-Connecticut Whale-
Day:167
1671235Portland Crying Chiwawas-Danbury Trashers-
Day:171
1711261Wilkes-Barre/Scranton Penguins-Danbury Trashers-
Day:174
1741277Danbury Trashers-Blainville-Boisbriand Armada-
Day:176
1761292Gatineau Olympiques-Danbury Trashers-
Day:177
1771300Danbury Trashers-Chisinau Pelicans-
Day:178
1781313Danbury Trashers-Springfield Falcons-
Day:182
1821333Gatineau Olympiques-Danbury Trashers-
Day:186
1861350Danbury Trashers-Springfield Falcons-



Arena Capacity - Ticket Price Attendance - %
Level 1 Level 2

Income
Home Games Left Average Attendance - % Average Income per Game Year to Date Revenue Capacity Team Popularity

Expenses
Year To Date Expenses Players Total Salaries Players Total Average Salaries Coaches Salaries
Salary Cap Per Days Salary Cap To Date Players In Salary Cap Players Out of Salary Cap

Estimate
Estimated Season Revenue Remaining Season Days Expenses Per Days Estimated Season Expenses




Danbury Trashers Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Danbury Trashers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Danbury Trashers Career Team Stats

Overall Home Visitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Danbury Trashers Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Danbury Trashers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA